generate.py 6.07 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import torch

12
from fairseq import bleu, data, options, tokenizer, utils
Sergey Edunov's avatar
Sergey Edunov committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from fairseq.meters import StopwatchMeter, TimeMeter
from fairseq.progress_bar import progress_bar
from fairseq.sequence_generator import SequenceGenerator


def main():
    parser = options.get_parser('Generation')
    parser.add_argument('--path', metavar='FILE', required=True, action='append',
                        help='path(s) to model file(s)')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--batch-size', default=32, type=int, metavar='N',
                              help='batch size')
    dataset_args.add_argument('--gen-subset', default='test', metavar='SPLIT',
                              help='data subset to generate (train, valid, test)')
    options.add_generation_args(parser)

    args = parser.parse_args()
    print(args)

    if args.no_progress_bar:
        progress_bar.enabled = False
    use_cuda = torch.cuda.is_available() and not args.cpu

36
    # Load dataset
37
38
39
40
    if args.replace_unk is None:
        dataset = data.load_dataset(args.data, [args.gen_subset], args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(args.data, [args.gen_subset], args.source_lang, args.target_lang)
41
42
43
44
45
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    # Load ensemble
Sergey Edunov's avatar
Sergey Edunov committed
46
    print('| loading model(s) from {}'.format(', '.join(args.path)))
Myle Ott's avatar
Myle Ott committed
47
    models, _ = utils.load_ensemble_for_inference(args.path, dataset.src_dict, dataset.dst_dict)
Sergey Edunov's avatar
Sergey Edunov committed
48
49
50

    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
Louis Martin's avatar
Louis Martin committed
51
    print('| {} {} {} examples'.format(args.data, args.gen_subset, len(dataset.splits[args.gen_subset])))
Sergey Edunov's avatar
Sergey Edunov committed
52

53
    # Optimize ensemble for generation
Sergey Edunov's avatar
Sergey Edunov committed
54
    for model in models:
Myle Ott's avatar
Myle Ott committed
55
56
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam)
Sergey Edunov's avatar
Sergey Edunov committed
57
58

    # Initialize generator
59
    translator = SequenceGenerator(
60
        models, beam_size=args.beam, stop_early=(not args.no_early_stop),
61
62
        normalize_scores=(not args.unnormalized), len_penalty=args.lenpen,
        unk_penalty=args.unkpen)
63
64
65
66
    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
Louis Martin's avatar
Louis Martin committed
67
68
69
70
71
72
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

    # Generate and compute BLEU score
    scorer = bleu.Scorer(dataset.dst_dict.pad(), dataset.dst_dict.eos(), dataset.dst_dict.unk())
    max_positions = min(model.max_encoder_positions() for model in models)
Myle Ott's avatar
Myle Ott committed
73
    itr = dataset.eval_dataloader(
74
        args.gen_subset, max_sentences=args.batch_size, max_positions=max_positions,
Myle Ott's avatar
Myle Ott committed
75
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test)
Louis Martin's avatar
Louis Martin committed
76
77
78
79
80
81
82
83
84
85
    num_sentences = 0
    with progress_bar(itr, smoothing=0, leave=False) as t:
        wps_meter = TimeMeter()
        gen_timer = StopwatchMeter()
        translations = translator.generate_batched_itr(
            t, maxlen_a=args.max_len_a, maxlen_b=args.max_len_b,
            cuda_device=0 if use_cuda else None, timer=gen_timer)
        for sample_id, src_tokens, target_tokens, hypos in translations:
            # Process input and ground truth
            target_tokens = target_tokens.int().cpu()
86
87
88
89
90
91
92
93
            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
                src_str = dataset.splits[args.gen_subset].src.get_original_text(sample_id)
                target_str = dataset.splits[args.gen_subset].dst.get_original_text(sample_id)
            else:
                src_str = dataset.src_dict.string(src_tokens, args.remove_bpe)
                target_str = dataset.dst_dict.string(target_tokens, args.remove_bpe, escape_unk=True)

Louis Martin's avatar
Louis Martin committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            if not args.quiet:
                print('S-{}\t{}'.format(sample_id, src_str))
                print('T-{}\t{}'.format(sample_id, target_str))

            # Process top predictions
            for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu(),
                    align_dict=align_dict,
                    dst_dict=dataset.dst_dict,
                    remove_bpe=args.remove_bpe)

                if not args.quiet:
                    print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str))
110
                    print('A-{}\t{}'.format(sample_id, ' '.join(map(str, alignment))))
Louis Martin's avatar
Louis Martin committed
111
112
113

                # Score only the top hypothesis
                if i == 0:
114
115
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
Louis Martin's avatar
Louis Martin committed
116
117
118
119
120
121
122
123
124
125
126
127
                        target_tokens = tokenizer.Tokenizer.tokenize(target_str,
                                                                     dataset.dst_dict,
                                                                     add_if_not_exist=True)
                    scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(src_tokens.size(0))
            t.set_postfix(wps='{:5d}'.format(round(wps_meter.avg)), refresh=False)
            num_sentences += 1

    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} tokens/s)'.format(
        num_sentences, gen_timer.n, gen_timer.sum, 1. / gen_timer.avg))
    print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
Sergey Edunov's avatar
Sergey Edunov committed
128
129
130
131


if __name__ == '__main__':
    main()