"vscode:/vscode.git/clone" did not exist on "a80f6892003e102f56bc956e9f8707b52c5d4487"
preprocess.py 8.07 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import argparse
from itertools import zip_longest
12
13
import os
import shutil
Sergey Edunov's avatar
Sergey Edunov committed
14
15

from fairseq import dictionary, indexed_dataset
Myle Ott's avatar
Myle Ott committed
16
from fairseq.tokenizer import Tokenizer, tokenize_line
Sergey Edunov's avatar
Sergey Edunov committed
17
18


Myle Ott's avatar
Myle Ott committed
19
def get_parser():
Sergey Edunov's avatar
Sergey Edunov committed
20
21
22
23
24
25
26
27
28
29
30
31
    parser = argparse.ArgumentParser(
        description='Data pre-processing: Create dictionary and store data in binary format')
    parser.add_argument('-s', '--source-lang', default=None, metavar='SRC', help='source language')
    parser.add_argument('-t', '--target-lang', default=None, metavar='TARGET', help='target language')
    parser.add_argument('--trainpref', metavar='FP', default='train', help='target language')
    parser.add_argument('--validpref', metavar='FP', default='valid', help='comma separated, valid language prefixes')
    parser.add_argument('--testpref', metavar='FP', default='test', help='comma separated, test language prefixes')
    parser.add_argument('--destdir', metavar='DIR', default='data-bin', help='destination dir')
    parser.add_argument('--thresholdtgt', metavar='N', default=0, type=int,
                        help='map words appearing less than threshold times to unknown')
    parser.add_argument('--thresholdsrc', metavar='N', default=0, type=int,
                        help='map words appearing less than threshold times to unknown')
32
33
    parser.add_argument('--tgtdict', metavar='FP', help='reuse given target dictionary')
    parser.add_argument('--srcdict', metavar='FP', help='reuse given source dictionary')
Sergey Edunov's avatar
Sergey Edunov committed
34
35
36
    parser.add_argument('--nwordstgt', metavar='N', default=-1, type=int, help='number of target words to retain')
    parser.add_argument('--nwordssrc', metavar='N', default=-1, type=int, help='number of source words to retain')
    parser.add_argument('--alignfile', metavar='ALIGN', default=None, help='an alignment file (optional)')
37
38
    parser.add_argument('--output-format', metavar='FORMAT', default='binary', choices=['binary', 'raw'],
                        help='output format (optional)')
Myle Ott's avatar
Myle Ott committed
39
40
    parser.add_argument('--joined-dictionary', action='store_true', help='Generate joined dictionary')
    return parser
Sergey Edunov's avatar
Sergey Edunov committed
41

Myle Ott's avatar
Myle Ott committed
42

Myle Ott's avatar
Myle Ott committed
43
def main(args):
Sergey Edunov's avatar
Sergey Edunov committed
44
45
46
    print(args)
    os.makedirs(args.destdir, exist_ok=True)

Myle Ott's avatar
Myle Ott committed
47
48
49
50
51
52
53
54
55
56
57
58
    if args.joined_dictionary:
        assert not args.srcdict, 'cannot combine --srcdict and --joined-dictionary'
        assert not args.tgtdict, 'cannot combine --tgtdict and --joined-dictionary'
        src_dict = dictionary.Dictionary()
        for lang in [args.source_lang, args.target_lang]:
            Tokenizer.add_file_to_dictionary(
                filename='{}.{}'.format(args.trainpref, lang),
                dict=src_dict,
                tokenize=tokenize_line,
            )
        src_dict.finalize()
        tgt_dict = src_dict
59
    else:
Myle Ott's avatar
Myle Ott committed
60
61
62
63
64
65
66
67
68
        if args.srcdict:
            src_dict = dictionary.Dictionary.load(args.srcdict)
        else:
            src_dict = Tokenizer.build_dictionary(filename='{}.{}'.format(args.trainpref, args.source_lang))
        if args.tgtdict:
            tgt_dict = dictionary.Dictionary.load(args.tgtdict)
        else:
            tgt_dict = Tokenizer.build_dictionary(filename='{}.{}'.format(args.trainpref, args.target_lang))

Sergey Edunov's avatar
Sergey Edunov committed
69
70
71
72
73
    src_dict.save(os.path.join(args.destdir, 'dict.{}.txt'.format(args.source_lang)),
                  threshold=args.thresholdsrc, nwords=args.nwordssrc)
    tgt_dict.save(os.path.join(args.destdir, 'dict.{}.txt'.format(args.target_lang)),
                  threshold=args.thresholdtgt, nwords=args.nwordstgt)

74
    def make_binary_dataset(input_prefix, output_prefix, lang):
Sergey Edunov's avatar
Sergey Edunov committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        dict = dictionary.Dictionary.load(os.path.join(args.destdir, 'dict.{}.txt'.format(lang)))
        print('| [{}] Dictionary: {} types'.format(lang, len(dict) - 1))

        ds = indexed_dataset.IndexedDatasetBuilder(
            '{}/{}.{}-{}.{}.bin'.format(args.destdir, output_prefix, args.source_lang,
                                        args.target_lang, lang)
        )

        def consumer(tensor):
            ds.add_item(tensor)

        input_file = '{}.{}'.format(input_prefix, lang)
        res = Tokenizer.binarize(input_file, dict, consumer)
        print('| [{}] {}: {} sents, {} tokens, {:.3}% replaced by {}'.format(
            lang, input_file, res['nseq'], res['ntok'],
            100 * res['nunk'] / res['ntok'], dict.unk_word))
        ds.finalize('{}/{}.{}-{}.{}.idx'.format(
            args.destdir, output_prefix,
            args.source_lang, args.target_lang, lang))

95
96
97
98
99
    def make_dataset(input_prefix, output_prefix, lang, output_format='binary'):
        if output_format == 'binary':
            make_binary_dataset(input_prefix, output_prefix, lang)
        elif output_format == 'raw':
            # Copy original text file to destination folder
100
            output_text_file = os.path.join(args.destdir, '{}.{}'.format(output_prefix, lang))
101
102
103
104
            shutil.copyfile('{}.{}'.format(input_prefix, lang), output_text_file)

    make_dataset(args.trainpref, 'train', args.source_lang, args.output_format)
    make_dataset(args.trainpref, 'train', args.target_lang, args.output_format)
Sergey Edunov's avatar
Sergey Edunov committed
105
106
    for k, validpref in enumerate(args.validpref.split(',')):
        outprefix = 'valid{}'.format(k) if k > 0 else 'valid'
107
108
        make_dataset(validpref, outprefix, args.source_lang, args.output_format)
        make_dataset(validpref, outprefix, args.target_lang, args.output_format)
Sergey Edunov's avatar
Sergey Edunov committed
109
110
    for k, testpref in enumerate(args.testpref.split(',')):
        outprefix = 'test{}'.format(k) if k > 0 else 'test'
111
112
        make_dataset(testpref, outprefix, args.source_lang, args.output_format)
        make_dataset(testpref, outprefix, args.target_lang, args.output_format)
Sergey Edunov's avatar
Sergey Edunov committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    print('| Wrote preprocessed data to {}'.format(args.destdir))

    if args.alignfile:
        src_file_name = '{}.{}'.format(args.trainpref, args.source_lang)
        tgt_file_name = '{}.{}'.format(args.trainpref, args.target_lang)
        src_dict = dictionary.Dictionary.load(os.path.join(args.destdir, 'dict.{}.txt'.format(args.source_lang)))
        tgt_dict = dictionary.Dictionary.load(os.path.join(args.destdir, 'dict.{}.txt'.format(args.target_lang)))
        freq_map = {}
        with open(args.alignfile, 'r') as align_file:
            with open(src_file_name, 'r') as src_file:
                with open(tgt_file_name, 'r') as tgt_file:
                    for a, s, t in zip_longest(align_file, src_file, tgt_file):
                        si = Tokenizer.tokenize(s, src_dict, add_if_not_exist=False)
                        ti = Tokenizer.tokenize(t, tgt_dict, add_if_not_exist=False)
                        ai = list(map(lambda x: tuple(x.split('-')), a.split()))
                        for sai, tai in ai:
                            srcidx = si[int(sai)]
                            tgtidx = ti[int(tai)]
                            if srcidx != src_dict.unk() and tgtidx != tgt_dict.unk():
                                assert srcidx != src_dict.pad()
                                assert srcidx != src_dict.eos()
                                assert tgtidx != tgt_dict.pad()
                                assert tgtidx != tgt_dict.eos()

                                if srcidx not in freq_map:
                                    freq_map[srcidx] = {}
                                if tgtidx not in freq_map[srcidx]:
                                    freq_map[srcidx][tgtidx] = 1
                                else:
                                    freq_map[srcidx][tgtidx] += 1

        align_dict = {}
        for srcidx in freq_map.keys():
            align_dict[srcidx] = max(freq_map[srcidx], key=freq_map[srcidx].get)

        with open(os.path.join(args.destdir, 'alignment.{}-{}.txt'.format(
                args.source_lang, args.target_lang)), 'w') as f:
            for k, v in align_dict.items():
                print('{} {}'.format(src_dict[k], tgt_dict[v]), file=f)


if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
155
156
157
    parser = get_parser()
    args = parser.parse_args()
    main(args)