test_sharded_ddp_features.py 20.8 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
7
Testing ShardedDDP
8
9
"""

10
from contextlib import suppress
11

12
import numpy as np
13
import pytest
14
15
16
17
18
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn import Linear, Sequential

19
from fairscale.nn.data_parallel import ShardedDataParallel
20
from fairscale.optim import OSS
21
22
from fairscale.utils.testing import (
    GPT2,
23
    SGDWithPausingCompute,
24
25
26
    available_devices,
    check_same_models_across_ranks,
    skip_if_less_than_four_gpu,
27
28
    skip_if_no_cuda,
    skip_if_single_gpu,
29
    temp_files_ctx,
30
)
31

32

33
34
35
36
37
def _get_mlp(tripwire: bool = False):
    if not tripwire:
        return Sequential(Linear(2, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3))

    class Tripwire(torch.nn.Module):
38
        """A model made to expose possible corner cases"""
39
40
41
42
43
44
45
46
47
48
49
50

        def __init__(self) -> None:
            super().__init__()
            self.model = Linear(2, 3, bias=False)

            # mismatched types in between trainable or not, can trip the buckets for instance
            self.register_parameter("tripwire", torch.nn.Parameter(torch.LongTensor((3, 3)), requires_grad=False))

        def forward(self, x):
            return self.model(x)

    return Tripwire()
51
52
53
54
55
56
57
58
59
60
61
62
63
64


class _DoubleInput(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.mlp = _get_mlp()

    def forward(self, x, y):
        x1 = self.mlp(x)
        x2 = self.mlp(y)
        return torch.cat((x1, x2), dim=1)


def run_one_step(
65
66
67
68
69
70
71
72
73
    rank,
    world_size,
    backend,
    device,
    temp_file_name,
    broadcast_buffers,
    grad_accumulation,
    reduce_buffer_size,
    optimizer_type,
74
    reduce_fp16=False,
75
76
):
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
77
78
79
    if device == torch.device("cuda"):
        torch.cuda.set_device(rank)

80
81
82
    torch.manual_seed(rank)
    np.random.seed(rank)

83
84
85
86
87
88
    # Any model works. Add one different buffer per rank
    model = _get_mlp()
    model.register_buffer("test_buffer", torch.ones((1)) * rank)
    model.to(device)

    next(model.parameters()).requires_grad = False  # Test non-trainable parameters
89

90
91
92
93
94
    optimizer_settings = {"lr": 1e-3, "momentum": 0.99}
    if optimizer_type == SGDWithPausingCompute:
        optimizer_settings["rank"] = rank

    optimizer = OSS(params=model.parameters(), optim=optimizer_type, **optimizer_settings)
95
    ddp_model = ShardedDataParallel(
96
97
98
99
100
        model,
        optimizer,
        broadcast_buffers=broadcast_buffers,
        reduce_buffer_size=reduce_buffer_size,
        reduce_fp16=reduce_fp16,
101
    )
102

103
104
105
106
    # The model should be synchronized in between the ranks at ShardedDataParallel construction time, check that
    check_same_models_across_ranks(
        ddp_model, dist.group.WORLD, params_should_be_equal=True, check_broadcast_buffers=broadcast_buffers
    )
107

108
109
    # Optim loop
    def closure():
110
        ddp_model.zero_grad(set_to_none=True)
111
112
113
114
115
116
117
118
119
120

        with ddp_model.no_sync() if grad_accumulation else suppress():
            input_tensor = torch.rand((64, 2)).to(device)
            loss = ddp_model(input_tensor).abs().sum()
            loss.backward()
        return loss

    # The models should stay the same in between the ranks
    for i in range(5):
        _ = optimizer.step(closure=closure)
121
122
123
124
125

        # For a sync of all the streams
        if device.type == torch.device("cuda").type:
            torch.cuda.synchronize(device=device)

126
        # when running on cpu/gloo the "nodes" are not really different
127
        same_params = device == torch.device("cpu") or not grad_accumulation
128
129
130
        check_same_models_across_ranks(
            ddp_model, dist.group.WORLD, params_should_be_equal=same_params, check_broadcast_buffers=broadcast_buffers
        )
131

132
133
    dist.destroy_process_group()

134

135
def run_test(backend, device, world_size, broadcast_buffers, grad_accumulation, reduce_buffer_size, optimizer_type):
136
137
138
139
140
141
142
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_one_step,
            args=(world_size, backend, device, temp_files[0], broadcast_buffers, grad_accumulation, reduce_buffer_size),
            nprocs=world_size,
            join=True,
        )
Min Xu's avatar
Min Xu committed
143
144


145
146
@skip_if_no_cuda
@skip_if_single_gpu
147
148
149
@pytest.mark.parametrize("broadcast_buffers", [True, False])
@pytest.mark.parametrize("grad_accumulation", [True, False])
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
150
@pytest.mark.parametrize("optimizer_type", [torch.optim.SGD, SGDWithPausingCompute])
151
@pytest.mark.parametrize("reduce_fp16", [False, True])
152
153
154
155
156
157
158
159
@pytest.mark.parametrize(
    "setup",
    [
        [dist.Backend.NCCL, torch.device("cuda")],
        [dist.Backend.GLOO, torch.device("cpu")],
        [dist.Backend.GLOO, torch.device("cuda")],
    ],
)
160
def test_step(broadcast_buffers, grad_accumulation, reduce_buffer_size, optimizer_type, reduce_fp16, setup):
161
    world_size = 2
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_one_step,
            args=(
                world_size,
                setup[0],
                setup[1],
                temp_files[0],
                broadcast_buffers,
                grad_accumulation,
                reduce_buffer_size,
                optimizer_type,
                reduce_fp16,
            ),
            nprocs=world_size,
            join=True,
        )
179
180


181
182
183
def run_test_two_inputs(rank, world_size, backend, device, temp_file_name, reduce_buffer_size):
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
    if device == "cuda":
184
185
186
187
188
189
        torch.cuda.set_device(rank)

    torch.manual_seed(rank)
    np.random.seed(rank)

    model = _DoubleInput().to(device)
190
191
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    ddp_model = ShardedDataParallel(model, optimizer, reduce_buffer_size=reduce_buffer_size)
192
193
194

    # Optim loop
    def closure():
195
        ddp_model.zero_grad(set_to_none=True)
196
197
198
199
200
        input_tensor = torch.rand((64, 2)).to(device)
        loss = ddp_model(input_tensor, input_tensor).abs().sum()
        loss.backward()
        return loss

201
    for _ in range(5):
202
        _ = optimizer.step(closure=closure)
Min Xu's avatar
Min Xu committed
203

204
205
    dist.destroy_process_group()

Min Xu's avatar
Min Xu committed
206

207
208
209
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
@pytest.mark.parametrize("backend", ["gloo", "nccl"])
@pytest.mark.parametrize("device", available_devices)
210
@skip_if_single_gpu
211
def test_inputs(reduce_buffer_size, backend, device):
212
213
    # Check that the ShardedDDP wrapper accepts tuple(tensors) as inputs
    world_size = 2
214
215
216
    if backend == "nccl" and device == "cpu":
        pytest.skip("Incompatible combination, or cuda not available")
        return
217
218
219
220
221
222
223
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_two_inputs,
            args=(world_size, backend, device, temp_files[0], reduce_buffer_size),
            nprocs=world_size,
            join=True,
        )
224
225
226
227
228
229


def test_ddp_attributes():
    # Check that ShardedDDP exposes the same attributes as Pytorch's DDP
    # - is multi_device_module
    # - device_type
230
231
    with temp_files_ctx(num=1) as temp_files:
        dist.init_process_group(init_method="file://" + temp_files[0], backend="gloo", rank=0, world_size=1)
232

233
234
235
        model = Sequential(Linear(2, 3), Linear(3, 3))
        optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
        ddp_model = ShardedDataParallel(model, optimizer)
236

237
238
        assert hasattr(ddp_model, "is_multi_device_module")
        assert hasattr(ddp_model, "device_type")
239
        assert hasattr(ddp_model, "module")
240
        dist.destroy_process_group()
241
242


243
def test_random_attributes():
244
245
246
    with temp_files_ctx(num=1) as temp_files:
        # Check that ShardedDDP exposes the original module's attributes
        dist.init_process_group(init_method="file://" + temp_files[0], backend="gloo", rank=0, world_size=1)
247

248
249
        model = Sequential(Linear(2, 3), Linear(3, 3))
        model.banana = "sweet"
250

251
252
        optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
        ddp_model = ShardedDataParallel(model, optimizer)
253

254
255
        assert hasattr(ddp_model, "banana")
        assert not hasattr(ddp_model, "orange")
256

257
        dist.destroy_process_group()
258
259


260
def test_catch_grad_grad():
261
262
263
    with temp_files_ctx(num=1) as temp_files:
        # Check that ShardedDDP exposes the original module's attributes
        dist.init_process_group(init_method="file://" + temp_files[0], backend="gloo", rank=0, world_size=1)
264

265
266
267
268
269
        model = Sequential(Linear(2, 3), Linear(3, 3))
        model.train()
        chained_grad = torch.zeros_like(next(model.parameters()))
        chained_grad.requires_grad = True
        next(model.parameters()).grad = chained_grad
270

271
272
        optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
        ddp_model = ShardedDataParallel(model, optimizer)
273

274
275
276
        inputs = torch.rand(100, 2)
        with pytest.raises(RuntimeError):
            _ = ddp_model(inputs)
277

278
        dist.destroy_process_group()
279
280


281
def test_mixed_types():
282
283
284
    with temp_files_ctx(num=1) as temp_files:
        # Check that ShardedDDP exposes the original module's attributes
        dist.init_process_group(init_method="file://" + temp_files[0], backend="gloo", rank=0, world_size=1)
285

286
        model = _get_mlp(tripwire=True)
287

288
289
290
291
        optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
        model = ShardedDataParallel(model, optimizer)
        input_tensor = torch.rand((2, 2))
        _ = model(input_tensor)
292

293
        dist.destroy_process_group()
294
295


296
def run_test_train_eval_change(rank, world_size, file):
297
    # Check that ShardedDDP handles the switch from training to eval properly
298
    dist.init_process_group(init_method="file://" + file, backend="gloo", rank=rank, world_size=world_size)
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    model = _get_mlp()
    model.train()
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    model = ShardedDataParallel(model, optimizer)
    input_tensor = torch.rand((2, 2))
    loss = model(input_tensor).sum()
    loss.backward()  # make sure that the gradients are reduced

    # Wipe the gradients and switch to eval mode
    model.zero_grad()
    model.eval()
    _ = model(input_tensor)
    assert next(model.parameters()).grad is None or torch.norm(next(model.parameters()).grad) < 1e-6

    # Get back to training
    model = model.train()
    model(input_tensor).sum().backward()
    assert torch.norm(next(model.parameters()).grad) > 0.0

    dist.destroy_process_group()


322
323
def test_train_eval_change():
    world_size = 4
324
325
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
326
327
328
329
            run_test_train_eval_change,
            args=(world_size, temp_files[0]),
            nprocs=world_size,
            join=True,
330
        )
331
332


333
def run_test_device_change(rank, world_size, backend, device, temp_file_name, reduce_buffer_size):
334
    # Check that the wrapped module can change devices
335
336
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
    torch.cuda.set_device(rank)
337

338
339
340
341
342
343
344
345
346
347
    model = Sequential(Linear(2, 3), Linear(3, 3)).cpu()  # not device on purpose, test changing it after the fact
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    ddp_model = ShardedDataParallel(
        model, optimizer, sync_models_at_startup=False, reduce_buffer_size=reduce_buffer_size
    )
    try:
        ddp_model.to(device)
        assert False, "Changing devices should be caught and not supported"
    except AssertionError:
        pass
348

349
350
351
    # Check that we can change the data type
    ddp_model.to(device=torch.device("cpu"), dtype=torch.float16)

352
353
354
355
356
    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
357
358
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
def test_device_change(reduce_buffer_size):
359
    # Check that ShardedDDP handles a device change properly
360
    world_size = 2
361
    backend = "nccl"
362
363
364
365
366
367
368
369
    with temp_files_ctx(num=1) as temp_files:
        device = "cuda"
        mp.spawn(
            run_test_device_change,
            args=(world_size, backend, device, temp_files[0], reduce_buffer_size),
            nprocs=world_size,
            join=True,
        )
370
371


372
373
374
375
376
377
def run_test_training_change(rank, world_size, backend, device, temp_file_name, reduce_buffer_size):
    group = dist.init_process_group(
        init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size
    )
    torch.cuda.set_device(rank)

378
    model = Sequential(Linear(2, 3), Linear(3, 3)).to(device)
379
380
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    ddp_model = ShardedDataParallel(model, optimizer, process_group=group, reduce_buffer_size=reduce_buffer_size)
381
382
383
384
385
386
387
388
389
390
391
392

    inputs = torch.rand((10, 2), device=device)
    outputs = ddp_model(inputs)  # assert if the module has not been changed properly
    _ = outputs.norm().backward()

    ddp_model.eval()
    ddp_model(inputs)  # This will assert if eval() is not properly taken into account
    ddp_model(inputs)

    dist.destroy_process_group()


393
394
395
396
397
398
399
@skip_if_no_cuda
@skip_if_single_gpu
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
def test_training_change(reduce_buffer_size):
    world_size = 2
    backend = "nccl"
    device = "cuda"
400
401
402
403
404
405
406
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_training_change,
            args=(world_size, backend, device, temp_files[0], reduce_buffer_size),
            nprocs=world_size,
            join=True,
        )
407
408


409
def run_test_ddp_sync_batch_norm(rank, world_size, backend, device, temp_file_name):
410
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
411
412
413

    model = Sequential(Linear(2, 3), torch.nn.BatchNorm1d(3), Linear(3, 3)).to(device)
    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
414
415
    model.to(device)  # in pytorch 1.5 syncBN switches to the default device/cpu

416
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    ddp_model = ShardedDataParallel(model, optimizer)

    assert isinstance(model[1], torch.nn.SyncBatchNorm)
    # Ensures sync batch norm handles have been added
    ddp_model(torch.randn(2, 2).to(device))
    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
def test_ddp_sync_batch_norm():
    # Check that ShardedDDP is compatible with sync batch norm across multiple GPUs
    world_size = 2
    backend = "gloo"
    device = "cuda"
432
433
434
435
436
437
438
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_ddp_sync_batch_norm,
            args=(world_size, backend, device, temp_files[0]),
            nprocs=world_size,
            join=True,
        )
439
440


441
def run_test_two_optimizers(rank, world_size, backend, device, temp_file_name):
442
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
443
444
445
446
447
448
449
450
    if device == torch.device("cuda"):
        torch.cuda.set_device(rank)

    torch.manual_seed(rank)
    np.random.seed(rank)
    model = _DoubleInput().to(device)

    parameters = list(model.parameters())
451
452
    optimizer_1 = OSS(params=parameters[:-10], optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    optimizer_2 = OSS(params=parameters[-10:], optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
453
454
455
456
457
458
459
460
461
462
    ddp_model = ShardedDataParallel(model, [optimizer_1, optimizer_2])

    # Optim loop
    def closure():
        input_tensor = torch.rand((64, 2)).to(device)
        loss = ddp_model(input_tensor, input_tensor).abs().sum()
        loss.backward()
        return loss

    for i in range(5):
463
464
465
466
467
        optimizer_1.zero_grad()
        optimizer_2.zero_grad()

        _ = optimizer_1.step(closure=closure)
        _ = optimizer_2.step(closure=closure)
468
469
470
471
472
473
474
475
476

    dist.destroy_process_group()


def test_two_optimizers():
    # Check that the ShardedDDP wrapper accepts tuple(tensors) as inputs
    world_size = 2
    backend = "gloo"
    device = "cpu"
477
478
479
480
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_two_optimizers, args=(world_size, backend, device, temp_files[0]), nprocs=world_size, join=True
        )
481
482


483
def run_test_gpt2(rank, world_size, backend, device, temp_file_name, reduce_buffer_size):
484
    INPUT_DIM = 16
485
486
487
488
489
    BACH_SIZE = 10
    STEPS = 10

    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
490
    torch.cuda.set_device(rank)
491
492
493
494

    torch.manual_seed(rank)
    np.random.seed(rank)
    model = GPT2(
495
        embed_dim=256, num_heads=2, num_layers=12, num_positions=INPUT_DIM * INPUT_DIM, num_vocab=512, num_classes=2
496
    )
497
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
498
    ddp_model = ShardedDataParallel(model, optimizer, reduce_buffer_size=reduce_buffer_size)
499

500
501
502
    # Move the model to another device post-construction
    model = model.to(device)

503
    # Optim loop
504
505
    set_to_none = True

506
    def closure():
507
508
509
510
        nonlocal set_to_none
        ddp_model.zero_grad(set_to_none=set_to_none)
        set_to_none = not set_to_none

511
512
513
514
515
516
517
518
519
520
        # Force int inputs to prevent the first grad from firing
        input_tensor = torch.randint(10, (BACH_SIZE, INPUT_DIM)).to(device)
        loss = ddp_model(input_tensor).abs().sum()
        loss.backward()
        return loss

    # Check for bucketing overflows
    for i in range(STEPS):
        _ = optimizer.step(closure=closure)

521
522
523
524
        # Stress test the .to() method
        ddp_model.to(device=device, dtype=torch.float16)
        ddp_model.to(device=device, dtype=torch.float32)

525
526
527
528
529
    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
530
@pytest.mark.parametrize("world_size", [1, 2])
531
532
@pytest.mark.parametrize("reduce_buffer", [2 ** 23, 2 ** 40])
def test_gpt2(world_size, reduce_buffer):
533
    # Check that having trainable unused params is fine
534
535
    backend = "gloo"
    device = "cuda"
536
    with temp_files_ctx(num=1) as temp_files:
537
538
539
540
541
542
        mp.spawn(
            run_test_gpt2,
            args=(world_size, backend, device, temp_files[0], reduce_buffer),
            nprocs=world_size,
            join=True,
        )
543
544


545
def run_test_multiple_groups(rank, world_size, tempfile_name, backend, reduce_buffer_size):
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    # Only work with the even ranks, to check that the global_rank indexing is properly used
    dist.init_process_group(init_method="file://" + tempfile_name, backend=backend, rank=rank, world_size=world_size)

    sub_group_ranks = [0, 2]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend=backend)

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cuda"
    torch.cuda.set_device(rank)

    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer, model):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss.backward()
                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
580
581
582
            check_same_models_across_ranks(
                model, process_group, params_should_be_equal=True, check_broadcast_buffers=True
            )
583
584
585
586
587
588
589
590

    if rank in sub_group_ranks:
        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
591
592
593
594
        optimizer = OSS(model.parameters(), group=process_group, lr=1e-3, momentum=0.99)
        model = ShardedDataParallel(
            model, optimizer, process_group=process_group, reduce_buffer_size=reduce_buffer_size
        )
595
596
597
598
599
        check(optimizer, model)

    dist.destroy_process_group(process_group)


600
601
602
603
@skip_if_less_than_four_gpu
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
@pytest.mark.parametrize("backend", ["gloo", "nccl"])
def test_multiple_groups(reduce_buffer_size, backend):
604
    world_size = 4
605
606
607
608
609
610
611
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_multiple_groups,
            args=(world_size, temp_files[0], backend, reduce_buffer_size),
            nprocs=world_size,
            join=True,
        )