"vscode:/vscode.git/clone" did not exist on "33895a052c40b97ba39bc014d0367b10d2724943"
test_sharded_ddp_features.py 20.2 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
7
Testing ShardedDDP
8
9
"""

10
from contextlib import suppress
11

12
import numpy as np
13
import pytest
14
15
16
17
18
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn import Linear, Sequential

19
from fairscale.nn.data_parallel import ShardedDataParallel
20
from fairscale.optim import OSS
21
22
from fairscale.utils.testing import (
    GPT2,
23
    SGDWithPausingCompute,
24
25
26
    available_devices,
    check_same_models_across_ranks,
    skip_if_less_than_four_gpu,
27
28
    skip_if_no_cuda,
    skip_if_single_gpu,
29
    temp_files_ctx,
30
)
31

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def _get_mlp(tripwire: bool = False):
    if not tripwire:
        return Sequential(Linear(2, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3), Linear(3, 3))

    class Tripwire(torch.nn.Module):
        """A model made to expose possible corner cases
        """

        def __init__(self) -> None:
            super().__init__()
            self.model = Linear(2, 3, bias=False)

            # mismatched types in between trainable or not, can trip the buckets for instance
            self.register_parameter("tripwire", torch.nn.Parameter(torch.LongTensor((3, 3)), requires_grad=False))

        def forward(self, x):
            return self.model(x)

    return Tripwire()
52
53
54
55
56
57
58
59
60
61
62
63
64
65


class _DoubleInput(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.mlp = _get_mlp()

    def forward(self, x, y):
        x1 = self.mlp(x)
        x2 = self.mlp(y)
        return torch.cat((x1, x2), dim=1)


def run_one_step(
66
67
68
69
70
71
72
73
74
    rank,
    world_size,
    backend,
    device,
    temp_file_name,
    broadcast_buffers,
    grad_accumulation,
    reduce_buffer_size,
    optimizer_type,
75
    reduce_fp16=False,
76
77
):
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
78
79
80
    if device == torch.device("cuda"):
        torch.cuda.set_device(rank)

81
82
83
    torch.manual_seed(rank)
    np.random.seed(rank)

84
85
86
87
88
89
    # Any model works. Add one different buffer per rank
    model = _get_mlp()
    model.register_buffer("test_buffer", torch.ones((1)) * rank)
    model.to(device)

    next(model.parameters()).requires_grad = False  # Test non-trainable parameters
90

91
92
93
94
95
    optimizer_settings = {"lr": 1e-3, "momentum": 0.99}
    if optimizer_type == SGDWithPausingCompute:
        optimizer_settings["rank"] = rank

    optimizer = OSS(params=model.parameters(), optim=optimizer_type, **optimizer_settings)
96
    ddp_model = ShardedDataParallel(
97
98
99
100
101
        model,
        optimizer,
        broadcast_buffers=broadcast_buffers,
        reduce_buffer_size=reduce_buffer_size,
        reduce_fp16=reduce_fp16,
102
    )
103

104
105
106
107
    # The model should be synchronized in between the ranks at ShardedDataParallel construction time, check that
    check_same_models_across_ranks(
        ddp_model, dist.group.WORLD, params_should_be_equal=True, check_broadcast_buffers=broadcast_buffers
    )
108

109
110
111
112
113
114
115
116
117
118
119
120
121
    # Optim loop
    def closure():
        optimizer.zero_grad()

        with ddp_model.no_sync() if grad_accumulation else suppress():
            input_tensor = torch.rand((64, 2)).to(device)
            loss = ddp_model(input_tensor).abs().sum()
            loss.backward()
        return loss

    # The models should stay the same in between the ranks
    for i in range(5):
        _ = optimizer.step(closure=closure)
122
123
124
125
126

        # For a sync of all the streams
        if device.type == torch.device("cuda").type:
            torch.cuda.synchronize(device=device)

127
        # when running on cpu/gloo the "nodes" are not really different
128
        same_params = device == torch.device("cpu") or not grad_accumulation
129
130
131
        check_same_models_across_ranks(
            ddp_model, dist.group.WORLD, params_should_be_equal=same_params, check_broadcast_buffers=broadcast_buffers
        )
132

133
134
    dist.destroy_process_group()

135

136
def run_test(backend, device, world_size, broadcast_buffers, grad_accumulation, reduce_buffer_size, optimizer_type):
137
138
139
140
141
142
143
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_one_step,
            args=(world_size, backend, device, temp_files[0], broadcast_buffers, grad_accumulation, reduce_buffer_size),
            nprocs=world_size,
            join=True,
        )
Min Xu's avatar
Min Xu committed
144
145


146
147
@skip_if_no_cuda
@skip_if_single_gpu
148
149
150
@pytest.mark.parametrize("broadcast_buffers", [True, False])
@pytest.mark.parametrize("grad_accumulation", [True, False])
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
151
@pytest.mark.parametrize("optimizer_type", [torch.optim.SGD, SGDWithPausingCompute])
152
@pytest.mark.parametrize("reduce_fp16", [False, True])
153
154
155
156
157
158
159
160
@pytest.mark.parametrize(
    "setup",
    [
        [dist.Backend.NCCL, torch.device("cuda")],
        [dist.Backend.GLOO, torch.device("cpu")],
        [dist.Backend.GLOO, torch.device("cuda")],
    ],
)
161
def test_step(broadcast_buffers, grad_accumulation, reduce_buffer_size, optimizer_type, reduce_fp16, setup):
162
    world_size = 2
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_one_step,
            args=(
                world_size,
                setup[0],
                setup[1],
                temp_files[0],
                broadcast_buffers,
                grad_accumulation,
                reduce_buffer_size,
                optimizer_type,
                reduce_fp16,
            ),
            nprocs=world_size,
            join=True,
        )
180
181


182
183
184
def run_test_two_inputs(rank, world_size, backend, device, temp_file_name, reduce_buffer_size):
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
    if device == "cuda":
185
186
187
188
189
190
        torch.cuda.set_device(rank)

    torch.manual_seed(rank)
    np.random.seed(rank)

    model = _DoubleInput().to(device)
191
192
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    ddp_model = ShardedDataParallel(model, optimizer, reduce_buffer_size=reduce_buffer_size)
193
194
195
196
197
198
199
200
201

    # Optim loop
    def closure():
        optimizer.zero_grad()
        input_tensor = torch.rand((64, 2)).to(device)
        loss = ddp_model(input_tensor, input_tensor).abs().sum()
        loss.backward()
        return loss

202
    for _ in range(5):
203
        _ = optimizer.step(closure=closure)
Min Xu's avatar
Min Xu committed
204

205
206
    dist.destroy_process_group()

Min Xu's avatar
Min Xu committed
207

208
209
210
211
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
@pytest.mark.parametrize("backend", ["gloo", "nccl"])
@pytest.mark.parametrize("device", available_devices)
def test_inputs(reduce_buffer_size, backend, device):
212
213
    # Check that the ShardedDDP wrapper accepts tuple(tensors) as inputs
    world_size = 2
214
215
216
    if backend == "nccl" and device == "cpu":
        pytest.skip("Incompatible combination, or cuda not available")
        return
217
218
219
220
221
222
223
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_two_inputs,
            args=(world_size, backend, device, temp_files[0], reduce_buffer_size),
            nprocs=world_size,
            join=True,
        )
224
225
226
227
228
229


def test_ddp_attributes():
    # Check that ShardedDDP exposes the same attributes as Pytorch's DDP
    # - is multi_device_module
    # - device_type
230
231
    with temp_files_ctx(num=1) as temp_files:
        dist.init_process_group(init_method="file://" + temp_files[0], backend="gloo", rank=0, world_size=1)
232

233
234
235
        model = Sequential(Linear(2, 3), Linear(3, 3))
        optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
        ddp_model = ShardedDataParallel(model, optimizer)
236

237
238
239
        assert hasattr(ddp_model, "is_multi_device_module")
        assert hasattr(ddp_model, "device_type")
        dist.destroy_process_group()
240
241


242
def test_random_attributes():
243
244
245
    with temp_files_ctx(num=1) as temp_files:
        # Check that ShardedDDP exposes the original module's attributes
        dist.init_process_group(init_method="file://" + temp_files[0], backend="gloo", rank=0, world_size=1)
246

247
248
        model = Sequential(Linear(2, 3), Linear(3, 3))
        model.banana = "sweet"
249

250
251
        optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
        ddp_model = ShardedDataParallel(model, optimizer)
252

253
254
        assert hasattr(ddp_model, "banana")
        assert not hasattr(ddp_model, "orange")
255

256
        dist.destroy_process_group()
257
258


259
def test_catch_grad_grad():
260
261
262
    with temp_files_ctx(num=1) as temp_files:
        # Check that ShardedDDP exposes the original module's attributes
        dist.init_process_group(init_method="file://" + temp_files[0], backend="gloo", rank=0, world_size=1)
263

264
265
266
267
268
        model = Sequential(Linear(2, 3), Linear(3, 3))
        model.train()
        chained_grad = torch.zeros_like(next(model.parameters()))
        chained_grad.requires_grad = True
        next(model.parameters()).grad = chained_grad
269

270
271
        optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
        ddp_model = ShardedDataParallel(model, optimizer)
272

273
274
275
        inputs = torch.rand(100, 2)
        with pytest.raises(RuntimeError):
            _ = ddp_model(inputs)
276

277
        dist.destroy_process_group()
278
279


280
def test_mixed_types():
281
282
283
    with temp_files_ctx(num=1) as temp_files:
        # Check that ShardedDDP exposes the original module's attributes
        dist.init_process_group(init_method="file://" + temp_files[0], backend="gloo", rank=0, world_size=1)
284

285
        model = _get_mlp(tripwire=True)
286

287
288
289
290
        optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
        model = ShardedDataParallel(model, optimizer)
        input_tensor = torch.rand((2, 2))
        _ = model(input_tensor)
291

292
        dist.destroy_process_group()
293
294


295
def run_test_train_eval_change(rank, world_size, file):
296
    # Check that ShardedDDP handles the switch from training to eval properly
297
    dist.init_process_group(init_method="file://" + file, backend="gloo", rank=rank, world_size=world_size)
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

    model = _get_mlp()
    model.train()
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    model = ShardedDataParallel(model, optimizer)
    input_tensor = torch.rand((2, 2))
    loss = model(input_tensor).sum()
    loss.backward()  # make sure that the gradients are reduced

    # Wipe the gradients and switch to eval mode
    model.zero_grad()
    model.eval()
    _ = model(input_tensor)
    assert next(model.parameters()).grad is None or torch.norm(next(model.parameters()).grad) < 1e-6

    # Get back to training
    model = model.train()
    model(input_tensor).sum().backward()
    assert torch.norm(next(model.parameters()).grad) > 0.0

    dist.destroy_process_group()


321
322
def test_train_eval_change():
    world_size = 4
323
324
325
326
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_train_eval_change, args=(world_size, temp_files[0]), nprocs=world_size, join=True,
        )
327
328


329
def run_test_device_change(rank, world_size, backend, device, temp_file_name, reduce_buffer_size):
330
    # Check that the wrapped module can change devices
331
332
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
    torch.cuda.set_device(rank)
333

334
335
336
337
338
339
340
341
342
343
    model = Sequential(Linear(2, 3), Linear(3, 3)).cpu()  # not device on purpose, test changing it after the fact
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    ddp_model = ShardedDataParallel(
        model, optimizer, sync_models_at_startup=False, reduce_buffer_size=reduce_buffer_size
    )
    try:
        ddp_model.to(device)
        assert False, "Changing devices should be caught and not supported"
    except AssertionError:
        pass
344

345
346
347
    # Check that we can change the data type
    ddp_model.to(device=torch.device("cpu"), dtype=torch.float16)

348
349
350
351
352
    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
353
354
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
def test_device_change(reduce_buffer_size):
355
    # Check that ShardedDDP handles a device change properly
356
    world_size = 2
357
    backend = "nccl"
358
359
360
361
362
363
364
365
    with temp_files_ctx(num=1) as temp_files:
        device = "cuda"
        mp.spawn(
            run_test_device_change,
            args=(world_size, backend, device, temp_files[0], reduce_buffer_size),
            nprocs=world_size,
            join=True,
        )
366
367


368
369
370
371
372
373
def run_test_training_change(rank, world_size, backend, device, temp_file_name, reduce_buffer_size):
    group = dist.init_process_group(
        init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size
    )
    torch.cuda.set_device(rank)

374
    model = Sequential(Linear(2, 3), Linear(3, 3)).to(device)
375
376
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    ddp_model = ShardedDataParallel(model, optimizer, process_group=group, reduce_buffer_size=reduce_buffer_size)
377
378
379
380
381
382
383
384
385
386
387
388

    inputs = torch.rand((10, 2), device=device)
    outputs = ddp_model(inputs)  # assert if the module has not been changed properly
    _ = outputs.norm().backward()

    ddp_model.eval()
    ddp_model(inputs)  # This will assert if eval() is not properly taken into account
    ddp_model(inputs)

    dist.destroy_process_group()


389
390
391
392
393
394
395
@skip_if_no_cuda
@skip_if_single_gpu
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
def test_training_change(reduce_buffer_size):
    world_size = 2
    backend = "nccl"
    device = "cuda"
396
397
398
399
400
401
402
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_training_change,
            args=(world_size, backend, device, temp_files[0], reduce_buffer_size),
            nprocs=world_size,
            join=True,
        )
403
404


405
def run_test_ddp_sync_batch_norm(rank, world_size, backend, device, temp_file_name):
406
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
407
408
409

    model = Sequential(Linear(2, 3), torch.nn.BatchNorm1d(3), Linear(3, 3)).to(device)
    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
410
411
    model.to(device)  # in pytorch 1.5 syncBN switches to the default device/cpu

412
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    ddp_model = ShardedDataParallel(model, optimizer)

    assert isinstance(model[1], torch.nn.SyncBatchNorm)
    # Ensures sync batch norm handles have been added
    ddp_model(torch.randn(2, 2).to(device))
    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
def test_ddp_sync_batch_norm():
    # Check that ShardedDDP is compatible with sync batch norm across multiple GPUs
    world_size = 2
    backend = "gloo"
    device = "cuda"
428
429
430
431
432
433
434
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_ddp_sync_batch_norm,
            args=(world_size, backend, device, temp_files[0]),
            nprocs=world_size,
            join=True,
        )
435
436


437
def run_test_two_optimizers(rank, world_size, backend, device, temp_file_name):
438
    dist.init_process_group(init_method="file://" + temp_file_name, backend=backend, rank=rank, world_size=world_size)
439
440
441
442
443
444
445
446
    if device == torch.device("cuda"):
        torch.cuda.set_device(rank)

    torch.manual_seed(rank)
    np.random.seed(rank)
    model = _DoubleInput().to(device)

    parameters = list(model.parameters())
447
448
    optimizer_1 = OSS(params=parameters[:-10], optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
    optimizer_2 = OSS(params=parameters[-10:], optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
449
450
451
452
453
454
455
456
457
458
    ddp_model = ShardedDataParallel(model, [optimizer_1, optimizer_2])

    # Optim loop
    def closure():
        input_tensor = torch.rand((64, 2)).to(device)
        loss = ddp_model(input_tensor, input_tensor).abs().sum()
        loss.backward()
        return loss

    for i in range(5):
459
460
461
462
463
        optimizer_1.zero_grad()
        optimizer_2.zero_grad()

        _ = optimizer_1.step(closure=closure)
        _ = optimizer_2.step(closure=closure)
464
465
466
467
468
469
470
471
472

    dist.destroy_process_group()


def test_two_optimizers():
    # Check that the ShardedDDP wrapper accepts tuple(tensors) as inputs
    world_size = 2
    backend = "gloo"
    device = "cpu"
473
474
475
476
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_two_optimizers, args=(world_size, backend, device, temp_files[0]), nprocs=world_size, join=True
        )
477
478
479


def run_test_gpt2(rank, world_size, backend, device, temp_file_name):
480
    INPUT_DIM = 16
481
482
483
484
485
    BACH_SIZE = 10
    STEPS = 10

    url = "file://" + temp_file_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
486
    torch.cuda.set_device(rank)
487
488
489
490

    torch.manual_seed(rank)
    np.random.seed(rank)
    model = GPT2(
491
        embed_dim=256, num_heads=2, num_layers=12, num_positions=INPUT_DIM * INPUT_DIM, num_vocab=512, num_classes=2
492
    )
493
    optimizer = OSS(params=model.parameters(), optim=torch.optim.SGD, lr=1e-3, momentum=0.99)
494
    ddp_model = ShardedDataParallel(model, optimizer)
495

496
497
498
    # Move the model to another device post-construction
    model = model.to(device)

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    # Optim loop
    def closure():
        optimizer.zero_grad()
        # Force int inputs to prevent the first grad from firing
        input_tensor = torch.randint(10, (BACH_SIZE, INPUT_DIM)).to(device)
        loss = ddp_model(input_tensor).abs().sum()
        loss.backward()
        return loss

    # Check for bucketing overflows
    for i in range(STEPS):
        _ = optimizer.step(closure=closure)

    dist.destroy_process_group()


@skip_if_no_cuda
@skip_if_single_gpu
517
518
519
@pytest.mark.parametrize("world_size", [1, 2])
def test_gpt2(world_size):
    # Check that having trainable unused params is fine
520
521
    backend = "gloo"
    device = "cuda"
522
523
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(run_test_gpt2, args=(world_size, backend, device, temp_files[0]), nprocs=world_size, join=True)
524
525


526
def run_test_multiple_groups(rank, world_size, tempfile_name, backend, reduce_buffer_size):
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    # Only work with the even ranks, to check that the global_rank indexing is properly used
    dist.init_process_group(init_method="file://" + tempfile_name, backend=backend, rank=rank, world_size=world_size)

    sub_group_ranks = [0, 2]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend=backend)

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cuda"
    torch.cuda.set_device(rank)

    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer, model):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss.backward()
                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
561
562
563
            check_same_models_across_ranks(
                model, process_group, params_should_be_equal=True, check_broadcast_buffers=True
            )
564
565
566
567
568
569
570
571

    if rank in sub_group_ranks:
        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
572
573
574
575
        optimizer = OSS(model.parameters(), group=process_group, lr=1e-3, momentum=0.99)
        model = ShardedDataParallel(
            model, optimizer, process_group=process_group, reduce_buffer_size=reduce_buffer_size
        )
576
577
578
579
580
        check(optimizer, model)

    dist.destroy_process_group(process_group)


581
582
583
584
@skip_if_less_than_four_gpu
@pytest.mark.parametrize("reduce_buffer_size", [0, 2 ** 20])
@pytest.mark.parametrize("backend", ["gloo", "nccl"])
def test_multiple_groups(reduce_buffer_size, backend):
585
    world_size = 4
586
587
588
589
590
591
592
    with temp_files_ctx(num=1) as temp_files:
        mp.spawn(
            run_test_multiple_groups,
            args=(world_size, temp_files[0], backend, reduce_buffer_size),
            nprocs=world_size,
            join=True,
        )