"examples/community/pipeline_zero1to3.py" did not exist on "ae82a3eb34afe2167e7013c871a738846b33a94e"
test_leak.py 4.36 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import pytest
import torch
from torch import nn

26
from fairscale.nn.pipe import AsyncPipe, MultiProcessPipe, is_checkpointing, is_recomputing
Tom Birch's avatar
Tom Birch committed
27
28
from fairscale.nn.pipe.skip import pop, skippable, stash
from fairscale.nn.pipe.skip.tracker import current_skip_tracker
29
from fairscale.utils.testing import get_worker_map, torch_spawn
Tom Birch's avatar
Tom Birch committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48


@skippable(stash=["skip"])
class Stash(nn.Module):
    def forward(self, input):
        yield stash("skip", input)
        return input


@skippable(pop=["skip"])
class Pop(nn.Module):
    def forward(self, input):
        skip = yield pop("skip")
        return input + skip


@torch_spawn([2])
@pytest.mark.parametrize("train", [True, False], ids=["train", "eval"])
@pytest.mark.parametrize("checkpoint", ["always", "except_last", "never"])
49
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
Tom Birch's avatar
Tom Birch committed
50
51
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" in os.environ, reason="broken on mpi")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
52
def delete_portal_tensor(train, checkpoint, pipe_class):
Tom Birch's avatar
Tom Birch committed
53
54
55
56
57
58
59
60
61
62
    # Without checkpointing:
    # +- Stash --+  +--- Pop ----+ - - - layers
    # | 2,blue,1 |--| 1,orange,0 | - - - tensor_life and portal function
    # +----------+  +------------+
    #
    # With checkpointing:
    # +- Stash --+  +--- Pop ----+  +--- Pop'----+  +- Stash'--+
    # | 3,blue,2 |--| 2,orange,1 |--| 1,orange,0 |--| 1,blue,0 |
    # +----------+  +------------+  +------------+  +----------+

63
64
    if pipe_class == AsyncPipe:
        pytest.skip("Skip tensors NYI for AsyncPipe")
65

Tom Birch's avatar
Tom Birch committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    def portal_tensor_life_is(tensor_life, skip_tracker=None):
        if skip_tracker is None:
            skip_tracker = current_skip_tracker()

        # Get the current portal.
        portal = list(skip_tracker.portals.values())[0]

        if tensor_life == 0:
            return portal.tensor_life == 0 and portal.tensor is None
        else:
            return portal.tensor_life == tensor_life and portal.tensor is not None

    # Check the portal tensor after 'Stash'.
    stash_ = Stash()

    @stash_.register_forward_hook
    def check_portal_tensor_after_stash(*_):
        if is_checkpointing():
            assert portal_tensor_life_is(2)
        elif is_recomputing():
            assert portal_tensor_life_is(0)
        else:
            assert portal_tensor_life_is(1)

    pop_ = Pop()

    @pop_.register_forward_hook
    def check_portal_tensor_after_pop(*_):
        if is_checkpointing():
            assert portal_tensor_life_is(1)
        elif is_recomputing():
            assert portal_tensor_life_is(0)
        else:
            assert portal_tensor_life_is(0)

    class NoPortalTensorAtBackward(nn.Module):
        class F(torch.autograd.Function):
            @staticmethod
            def forward(ctx, input):
                ctx.skip_tracker = current_skip_tracker()
                return input.detach()

            @staticmethod
            def backward(ctx, grad):
                assert portal_tensor_life_is(0, skip_tracker=ctx.skip_tracker)
                return grad

        def forward(self, input):
            return self.F.apply(input)

    model = nn.Sequential(NoPortalTensorAtBackward(), stash_, pop_)
117
    model = pipe_class(model, balance=[2, 1], worker_map=get_worker_map(), chunks=2, checkpoint=checkpoint,)
Tom Birch's avatar
Tom Birch committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

    input = torch.rand(10, requires_grad=True)

    if train:
        model.train()
        output = model(input)
        if model.group.rank() == 1:
            output.norm().backward()
        else:
            model.back_helper(output)
    else:
        model.eval()
        with torch.no_grad():
            model(input)

    torch.distributed.barrier()