"example/01_gemm/gemm_dl_fp16.cpp" did not exist on "7db48f900829980712d020b7d400ed137743c164"
test_leak.py 4.21 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import pytest
import torch
from torch import nn

from fairscale.nn.pipe import Pipe, is_checkpointing, is_recomputing
from fairscale.nn.pipe.skip import pop, skippable, stash
from fairscale.nn.pipe.skip.tracker import current_skip_tracker
from tests.nn.model_parallel.commons import get_worker_map, torch_spawn


@skippable(stash=["skip"])
class Stash(nn.Module):
    def forward(self, input):
        yield stash("skip", input)
        return input


@skippable(pop=["skip"])
class Pop(nn.Module):
    def forward(self, input):
        skip = yield pop("skip")
        return input + skip


@torch_spawn([2])
@pytest.mark.parametrize("train", [True, False], ids=["train", "eval"])
@pytest.mark.parametrize("checkpoint", ["always", "except_last", "never"])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" in os.environ, reason="broken on mpi")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def delete_portal_tensor(train, checkpoint):
    # Without checkpointing:
    # +- Stash --+  +--- Pop ----+ - - - layers
    # | 2,blue,1 |--| 1,orange,0 | - - - tensor_life and portal function
    # +----------+  +------------+
    #
    # With checkpointing:
    # +- Stash --+  +--- Pop ----+  +--- Pop'----+  +- Stash'--+
    # | 3,blue,2 |--| 2,orange,1 |--| 1,orange,0 |--| 1,blue,0 |
    # +----------+  +------------+  +------------+  +----------+

    def portal_tensor_life_is(tensor_life, skip_tracker=None):
        if skip_tracker is None:
            skip_tracker = current_skip_tracker()

        # Get the current portal.
        portal = list(skip_tracker.portals.values())[0]

        if tensor_life == 0:
            return portal.tensor_life == 0 and portal.tensor is None
        else:
            return portal.tensor_life == tensor_life and portal.tensor is not None

    # Check the portal tensor after 'Stash'.
    stash_ = Stash()

    @stash_.register_forward_hook
    def check_portal_tensor_after_stash(*_):
        if is_checkpointing():
            assert portal_tensor_life_is(2)
        elif is_recomputing():
            assert portal_tensor_life_is(0)
        else:
            assert portal_tensor_life_is(1)

    pop_ = Pop()

    @pop_.register_forward_hook
    def check_portal_tensor_after_pop(*_):
        if is_checkpointing():
            assert portal_tensor_life_is(1)
        elif is_recomputing():
            assert portal_tensor_life_is(0)
        else:
            assert portal_tensor_life_is(0)

    class NoPortalTensorAtBackward(nn.Module):
        class F(torch.autograd.Function):
            @staticmethod
            def forward(ctx, input):
                ctx.skip_tracker = current_skip_tracker()
                return input.detach()

            @staticmethod
            def backward(ctx, grad):
                assert portal_tensor_life_is(0, skip_tracker=ctx.skip_tracker)
                return grad

        def forward(self, input):
            return self.F.apply(input)

    model = nn.Sequential(NoPortalTensorAtBackward(), stash_, pop_)
    model = Pipe(
        model, balance=[2, 1], style=Pipe.MultiProcess, worker_map=get_worker_map(), chunks=2, checkpoint=checkpoint,
    )

    input = torch.rand(10, requires_grad=True)

    if train:
        model.train()
        output = model(input)
        if model.group.rank() == 1:
            output.norm().backward()
        else:
            model.back_helper(output)
    else:
        model.eval()
        with torch.no_grad():
            model(input)

    torch.distributed.barrier()