test_oss.py 8.58 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
10
11
12
13
14
15
16
17
18
19
20
import os

import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

import fairscale.optim as optim

skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")

21
22
23
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
24
25
26
27

def setup_module(module):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29500"
28
    dist.init_process_group(backend=BACKEND, rank=0, world_size=1)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
29
30
31
32
33


def dist_init(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29501"
34
    dist.init_process_group(backend=BACKEND, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
35
36
37
38
39
40
41
42


def test_create():
    params = [torch.rand(1)]
    o = optim.OSS(params, lr=0.01)


def test_state_dict():
43
    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
44
45
46
47
48
49
    o = optim.OSS([x], lr=0.1, momentum=0.9)
    x.backward()
    o.step()
    assert x == torch.tensor([0.9], device=DEVICE)
    assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
    o.zero_grad()
50
    o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
51
    state_dict = o.state_dict()
52
53

    # Check that the pulled state is what we expect
54
    assert state_dict["state"][0]["param_groups"][0]["lr"] == 0.1
55
56

    # Check that the pulled state and the .param_groups attribute are in sync
57
    assert state_dict["state"][0]["param_groups"][0]["lr"] == o.param_groups[0]["lr"]
58
59

    # Check that it's correctly loaded
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
60
61
    o = optim.OSS([x], lr=0.01)
    o.load_state_dict(state_dict)
62
63
    # Check that state is correct and on proper device
    assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
64
65
66
67

    # We should now be using a lr of 0.1, both within the optimizer
    # and as exposed by the .param_groups attribute
    assert o.param_groups[0]["lr"] == 0.1
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
68
69
    x.backward()
    o.step()
70
71
    assert x == torch.tensor([0.71], device=DEVICE)
    assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)
72

73
74
75
    # Check that the exposed param_groups are on the proper device
    assert o.param_groups[0]["params"][0].device == x.device

76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class SGDWithStepKWArg(torch.optim.SGD):
    def step(self, closure=None, kwarg=[]):
        super().step()
        kwarg.append(5)


def test_step_with_kwargs():
    kwarg = []
    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
    o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
    x.backward()
    o.step(0, kwarg=kwarg)
    assert kwarg == [5]
    assert x == torch.tensor([0.9], device=DEVICE)


93
94
95
96
97
98
99
100
101
102
def test_local_state_dict():
    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
    o = optim.OSS([x], lr=0.1)
    local_state_dict = o.local_state_dict()
    o = optim.OSS([x], lr=0.01)
    o.load_local_state_dict(local_state_dict)
    # We should now be using a lr of 0.1.
    x.backward()
    o.step()
    assert x == torch.tensor([0.9], device=DEVICE)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
103
104
105
106
107
108
109
110
111
112
113
114
115


def run_test_add_param_group(rank, world_size):
    dist_init(rank, world_size)
    params = []
    for size in [4, 5, 2, 6, 4]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert len(o.param_groups) == 1
    o.add_param_group({"params": [torch.rand(3, 1)]})
    assert len(o.param_groups) == 2
    # Verify that added group is added to the correct partition making all have 8 elements.
    assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == 8
116
    assert len(o.optim.param_groups) == 2
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162


def test_add_param_group():
    world_size = 3
    mp.spawn(run_test_add_param_group, args=(world_size,), nprocs=world_size, join=True)


def run_test_zero_grad(rank, world_size):
    dist_init(rank, world_size)
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad


def test_zero_grad():
    world_size = 2
    mp.spawn(run_test_zero_grad, args=(world_size,), nprocs=world_size, join=True)


def run_test_step(rank, world_size):
    dist_init(rank, world_size)
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)


@skip_if_no_cuda
def test_step():
163
    world_size = min(2, torch.cuda.device_count())
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
164
165
166
    mp.spawn(run_test_step, args=(world_size,), nprocs=world_size, join=True)


167
def run_test_step_with_closure(rank, world_size, optimizer=None):
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
168
    dist_init(rank, world_size)
169

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
170
171
172
173
174
175
176
177
178
179
180
181
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
182

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
183
    o = optim.OSS(m.parameters(), lr=0.1)
184

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)


@skip_if_no_cuda
def test_step_with_closure():
207
    world_size = min(2, torch.cuda.device_count())
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    mp.spawn(run_test_step_with_closure, args=(world_size,), nprocs=world_size, join=True)


def run_test_sharding(rank, world_size):
    dist_init(rank, world_size)
    params = []
    for size in [5, 4, 2, 6, 4, 3]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == 8


def test_sharding():
    world_size = 3
    mp.spawn(run_test_sharding, args=(world_size,), nprocs=world_size, join=True)
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259


def run_test_collect_shards(rank, world_size, reference_rank):
    dist_init(rank, world_size)
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
260
        assert len(optimizer_state_dict["state"]) == world_size
261
262
263
264
265
266
267
268
269
270
271
272
273
    else:
        optimizer_state_dict = {}

    optimizer_state_dict = optim.utils.broadcast_object(
        optimizer_state_dict, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
    )

    # Load the optimizer state dict
    optimizer.load_state_dict(optimizer_state_dict)


def test_collect_shards():
    world_size = 3
274
275
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
276
277
278
279
280
    reference_rank = 0

    mp.spawn(
        run_test_collect_shards, args=(world_size, reference_rank), nprocs=world_size, join=True,
    )