transformer.py 9.21 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
6
7
8
9
10
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import math
import time

import torch
import torch.nn as nn
import torchtext
from torchtext.data.utils import get_tokenizer

11
from fairscale.nn import Pipe
12

Jun Ru Anderson's avatar
Jun Ru Anderson committed
13
14
15
16
17
18
19
20
21
try:
    from fairscale.optim.adam import Adam  # type: ignore

    can_benchmark = True
except ImportError:
    from torch.optim import Adam  # type: ignore

    can_benchmark = False

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

class EmbeddingLayer(nn.Embedding):
    def __init__(self, ntoken, ninp, initrange):
        super().__init__(ntoken, ninp)
        self.ninp = ninp
        self.weight.data.uniform_(-initrange, initrange)

    def forward(self, src):
        return super().forward(src) * math.sqrt(self.ninp)


class PositionalEncodingLayer(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncodingLayer, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer("pe", pe)

    def forward(self, x):
        x = x + self.pe[: x.size(0), :]
        return self.dropout(x)


class TransformerDecoderLayer(nn.TransformerEncoderLayer):
    """Though this class inherits from torch.nn.TransformerEncoderLayer,
        it functions as a decoder in this model"""

    def __init__(self, ninp, nhead, nhid, droupout):
        super().__init__(ninp, nhead, nhid, droupout)
        self.src_mask = None

    def _generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float("-inf")).masked_fill(mask == 1, float(0.0))
        return mask

    def forward(self, src):
        if self.src_mask is None or self.src_mask.size(0) != len(src):
            device = src.device
            mask = self._generate_square_subsequent_mask(len(src)).to(device)
            self.src_mask = mask

        return super().forward(src, self.src_mask)


class LinearLayer(nn.Linear):
    def __init__(self, ninp, ntoken, initrange):
        super().__init__(ninp, ntoken)
        self.bias.data.zero_()
        self.weight.data.uniform_(-initrange, initrange)


class TransformerLMSequntial(nn.Sequential):
    """A small language model based on the design of GPT-2 using nn.Sequeitnal
       for compatability with Pipe"""

    def __init__(self, ntokens, ninp, nhead, nhid, dropout, initrange):
        super(TransformerLMSequntial, self).__init__(
            EmbeddingLayer(ntokens, ninp, initrange),
            PositionalEncodingLayer(ninp, dropout),
            TransformerDecoderLayer(ninp, nhead, nhid, dropout),
            LinearLayer(ninp, ntokens, initrange),
        )

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

def get_data(device):
    TEXT = torchtext.data.Field(
        tokenize=get_tokenizer("basic_english"), init_token="<sos>", eos_token="<eos>", lower=True
    )
    train_txt, val_txt, test_txt = torchtext.datasets.WikiText2.splits(TEXT)
    TEXT.build_vocab(train_txt)
    ntokens = len(TEXT.vocab.stoi)

    batch_size = 20
    eval_batch_size = 10
    train_data = batchify(train_txt, batch_size, TEXT, device)
    val_data = batchify(val_txt, eval_batch_size, TEXT, device)
    test_data = batchify(test_txt, eval_batch_size, TEXT, device)

    return ntokens, train_data, val_data, test_data


def batchify(data, bsz, TEXT, device):
    data = TEXT.numericalize([data.examples[0].text])
    nbatch = data.size(0) // bsz
    data = data.narrow(0, 0, nbatch * bsz)
    data = data.view(bsz, -1).t().contiguous()
    return data.to(device)


def get_batch(source, i, bptt):
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i : i + seq_len]
    target = source[i + 1 : i + 1 + seq_len].view(-1)
    return data, target


def make_model(device, ntokens):
126
    ninp = 50  # embedding dimension
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
127
128
    nhid = 50  # the dimension of the feedforward network model in nn.TransformerEncoder
    nhead = 2  # the number of heads in the multiheadattention models
129
130
131
    dropout = 0
    initrange = 0.1

132
133
134
    model = TransformerLMSequntial(ntokens, ninp, nhead, nhid, dropout, initrange).half().to(device)
    balance = generate_balance(min(num_devices, 4), len(model))
    p = Pipe(model, balance)
135

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
136
    criterion = nn.CrossEntropyLoss()
137
    lr = 0.01  # learning rate
138
    optimizer = Adam(p.parameters(), lr=lr, mixed_precision=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
139

140
    return p, criterion, optimizer
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
141
142
143
144
145
146
147
148
149
150


def train(train_data, model, criterion, optimizer, bptt, ntokens):
    model.train()
    total_loss = 0.0
    start_time = time.time()
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i, bptt)
        optimizer.zero_grad()
        output = model(data)
151
152
        output = output.to(targets.device)

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
153
154
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()
155
156

        torch.nn.utils.clip_grad_value_(model.parameters(), 0.05)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
157
158
159
160
161
162
163
164
        optimizer.step()

        total_loss += loss.item()
        log_interval = 200
        if batch % log_interval == 0 and batch > 0:
            cur_loss = total_loss / log_interval
            elapsed = time.time() - start_time
            print(
165
166
167
                "| {:5d}/{:5d} batches | ms/batch {:5.2f} | "
                "loss {:5.2f} | ppl {:8.2f}".format(
                    batch, len(train_data) // bptt, elapsed * 1000 / log_interval, cur_loss, math.exp(cur_loss)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
168
169
170
171
172
173
174
175
176
177
178
179
180
                )
            )
            total_loss = 0
            start_time = time.time()


def evaluate(eval_model, data_source, criterion, bptt, ntokens):
    eval_model.eval()
    total_loss = 0.0
    with torch.no_grad():
        for i in range(0, data_source.size(0) - 1, bptt):
            data, targets = get_batch(data_source, i, bptt)
            output = eval_model(data)
181
            output = output.to(targets.device)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            output_flat = output.view(-1, ntokens)
            total_loss += len(data) * criterion(output_flat, targets).item()
    return total_loss / (len(data_source) - 1)


def get_number_of_words(data):
    return data.size()[0] * data.size()[1]


def benchmark_language_model(train_data, val_data, test_data, model, criterion, optimizer, ntokens):
    epoch = 1
    bptt = 35
    start_time = time.time()

    print("-" * 89)
    print("| start of epoch {:1d}".format(epoch))
    print("-" * 89)
    epoch_start_time = time.time()
    train(train_data, model, criterion, optimizer, bptt, ntokens)
    val_loss = evaluate(model, val_data, criterion, bptt, ntokens)
    print("-" * 89)
    print(
204
205
206
        "| end of epoch {:1d} | time: {:5.2f}s | valid loss {:5.2f} ".format(
            epoch, (time.time() - epoch_start_time), val_loss
        )
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
207
208
209
210
211
212
213
214
215
216
    )
    print("-" * 89)

    elapsed_time = time.time() - start_time
    nwords = get_number_of_words(train_data) + get_number_of_words(val_data)
    wps = nwords / elapsed_time

    test_loss = evaluate(model, test_data, criterion, bptt, ntokens)
    print("=" * 89)
    print(
217
218
        "| end of training | test loss {:5.2f} \n| time: {:5.2f}s | words: {:3d} | wps: {:5.2f}".format(
            test_loss, elapsed_time, nwords, wps
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
219
220
221
222
        )
    )
    print("=" * 89)

Jun Ru Anderson's avatar
Jun Ru Anderson committed
223
    if can_benchmark and len(model.balance) == 4:
224
        # Assert that words per second is within 3 standard deviations of the average
Jun Ru Anderson's avatar
Jun Ru Anderson committed
225
        # of six golden runs
226
        assert wps > 27799.2 - (3 * 522.145)
227
228
229
230
231
232
233

        print("Peak allocated bytes on cuda:0: {:1d}".format(torch.cuda.memory_stats(0)["allocated_bytes.all.peak"]))
        print("Peak allocated bytes on cuda:1: {:1d}".format(torch.cuda.memory_stats(1)["allocated_bytes.all.peak"]))
        print("Peak allocated bytes on cuda:2: {:1d}".format(torch.cuda.memory_stats(2)["allocated_bytes.all.peak"]))
        print("Peak allocated bytes on cuda:3: {:1d}".format(torch.cuda.memory_stats(3)["allocated_bytes.all.peak"]))

        # Assert that memory usage on each GPU is within 10% of golden run
234
        # Right-hand-side is golden run bytes * 110%
235
236
237
238
        assert torch.cuda.memory_stats(0)["allocated_bytes.all.peak"] < 210479616 * 1.1
        assert torch.cuda.memory_stats(1)["allocated_bytes.all.peak"] < 640512 * 1.1
        assert torch.cuda.memory_stats(2)["allocated_bytes.all.peak"] < 1605120 * 1.1
        assert torch.cuda.memory_stats(3)["allocated_bytes.all.peak"] < 113801216 * 1.1
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        print("No regression detected")


def generate_balance(num_devices, num_layers):
    balance = []
    layers_assigned = 0
    for i in range(num_devices):
        x = (num_layers - layers_assigned) / (num_devices - i)
        if x.is_integer():
            balance.append(int(x))
            layers_assigned += x
        else:
            balance.append(math.ceil(x))
            layers_assigned += math.ceil(x)
    return balance

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
255
256

if __name__ == "__main__":
257
258
259
260
    num_devices = torch.cuda.device_count()
    assert num_devices > 0

    torch.manual_seed(0)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
261
262
263
    device = torch.device("cuda")
    ntokens, train_data, val_data, test_data = get_data(device)
    model, criterion, optimizer = make_model(device, ntokens)
264
265
    benchmark_language_model(train_data, val_data, test_data, model, criterion, optimizer, ntokens)
    del model