transformer.py 9.05 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
6
7
8
9
10
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import math
import time

import torch
import torch.nn as nn
import torchtext
from torchtext.data.utils import get_tokenizer

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import fairscale.nn.pipe.pipe as pipe


class EmbeddingLayer(nn.Embedding):
    def __init__(self, ntoken, ninp, initrange):
        super().__init__(ntoken, ninp)
        self.ninp = ninp
        self.weight.data.uniform_(-initrange, initrange)

    def forward(self, src):
        return super().forward(src) * math.sqrt(self.ninp)


class PositionalEncodingLayer(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncodingLayer, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer("pe", pe)

    def forward(self, x):
        x = x + self.pe[: x.size(0), :]
        return self.dropout(x)


class TransformerDecoderLayer(nn.TransformerEncoderLayer):
    """Though this class inherits from torch.nn.TransformerEncoderLayer,
        it functions as a decoder in this model"""

    def __init__(self, ninp, nhead, nhid, droupout):
        super().__init__(ninp, nhead, nhid, droupout)
        self.src_mask = None

    def _generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float("-inf")).masked_fill(mask == 1, float(0.0))
        return mask

    def forward(self, src):
        if self.src_mask is None or self.src_mask.size(0) != len(src):
            device = src.device
            mask = self._generate_square_subsequent_mask(len(src)).to(device)
            self.src_mask = mask

        return super().forward(src, self.src_mask)


class LinearLayer(nn.Linear):
    def __init__(self, ninp, ntoken, initrange):
        super().__init__(ninp, ntoken)
        self.bias.data.zero_()
        self.weight.data.uniform_(-initrange, initrange)


class TransformerLMSequntial(nn.Sequential):
    """A small language model based on the design of GPT-2 using nn.Sequeitnal
       for compatability with Pipe"""

    def __init__(self, ntokens, ninp, nhead, nhid, dropout, initrange):
        super(TransformerLMSequntial, self).__init__(
            EmbeddingLayer(ntokens, ninp, initrange),
            PositionalEncodingLayer(ninp, dropout),
            TransformerDecoderLayer(ninp, nhead, nhid, dropout),
            LinearLayer(ninp, ntokens, initrange),
        )

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

def get_data(device):
    TEXT = torchtext.data.Field(
        tokenize=get_tokenizer("basic_english"), init_token="<sos>", eos_token="<eos>", lower=True
    )
    train_txt, val_txt, test_txt = torchtext.datasets.WikiText2.splits(TEXT)
    TEXT.build_vocab(train_txt)
    ntokens = len(TEXT.vocab.stoi)

    batch_size = 20
    eval_batch_size = 10
    train_data = batchify(train_txt, batch_size, TEXT, device)
    val_data = batchify(val_txt, eval_batch_size, TEXT, device)
    test_data = batchify(test_txt, eval_batch_size, TEXT, device)

    return ntokens, train_data, val_data, test_data


def batchify(data, bsz, TEXT, device):
    data = TEXT.numericalize([data.examples[0].text])
    nbatch = data.size(0) // bsz
    data = data.narrow(0, 0, nbatch * bsz)
    data = data.view(bsz, -1).t().contiguous()
    return data.to(device)


def get_batch(source, i, bptt):
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i : i + seq_len]
    target = source[i + 1 : i + 1 + seq_len].view(-1)
    return data, target


def make_model(device, ntokens):
117
    ninp = 50  # embedding dimension
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
118
119
    nhid = 50  # the dimension of the feedforward network model in nn.TransformerEncoder
    nhead = 2  # the number of heads in the multiheadattention models
120
121
122
123
124
    dropout = 0
    initrange = 0.1

    model = TransformerLMSequntial(ntokens, ninp, nhead, nhid, dropout, initrange).to(device)

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
125
    criterion = nn.CrossEntropyLoss()
126
    lr = 1.0  # learning rate
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
127
128
129
130
131
132
133
134
135
136
137
138
139
    optimizer = torch.optim.SGD(model.parameters(), lr=lr)

    return model, criterion, optimizer


def train(train_data, model, criterion, optimizer, bptt, ntokens):
    model.train()
    total_loss = 0.0
    start_time = time.time()
    for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
        data, targets = get_batch(train_data, i, bptt)
        optimizer.zero_grad()
        output = model(data)
140
141
        output = output.to(targets.device)

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
142
143
        loss = criterion(output.view(-1, ntokens), targets)
        loss.backward()
144
145

        torch.nn.utils.clip_grad_value_(model.parameters(), 0.05)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
146
147
148
149
150
151
152
153
        optimizer.step()

        total_loss += loss.item()
        log_interval = 200
        if batch % log_interval == 0 and batch > 0:
            cur_loss = total_loss / log_interval
            elapsed = time.time() - start_time
            print(
154
155
156
                "| {:5d}/{:5d} batches | ms/batch {:5.2f} | "
                "loss {:5.2f} | ppl {:8.2f}".format(
                    batch, len(train_data) // bptt, elapsed * 1000 / log_interval, cur_loss, math.exp(cur_loss)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
157
158
159
160
161
162
163
164
165
166
167
168
169
                )
            )
            total_loss = 0
            start_time = time.time()


def evaluate(eval_model, data_source, criterion, bptt, ntokens):
    eval_model.eval()
    total_loss = 0.0
    with torch.no_grad():
        for i in range(0, data_source.size(0) - 1, bptt):
            data, targets = get_batch(data_source, i, bptt)
            output = eval_model(data)
170
            output = output.to(targets.device)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
            output_flat = output.view(-1, ntokens)
            total_loss += len(data) * criterion(output_flat, targets).item()
    return total_loss / (len(data_source) - 1)


def get_number_of_words(data):
    return data.size()[0] * data.size()[1]


def benchmark_language_model(train_data, val_data, test_data, model, criterion, optimizer, ntokens):
    epoch = 1
    bptt = 35
    start_time = time.time()

    print("-" * 89)
    print("| start of epoch {:1d}".format(epoch))
    print("-" * 89)
    epoch_start_time = time.time()
    train(train_data, model, criterion, optimizer, bptt, ntokens)
    val_loss = evaluate(model, val_data, criterion, bptt, ntokens)
    print("-" * 89)
    print(
193
194
195
        "| end of epoch {:1d} | time: {:5.2f}s | valid loss {:5.2f} ".format(
            epoch, (time.time() - epoch_start_time), val_loss
        )
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
196
197
198
199
200
201
202
203
204
205
    )
    print("-" * 89)

    elapsed_time = time.time() - start_time
    nwords = get_number_of_words(train_data) + get_number_of_words(val_data)
    wps = nwords / elapsed_time

    test_loss = evaluate(model, test_data, criterion, bptt, ntokens)
    print("=" * 89)
    print(
206
207
        "| end of training | test loss {:5.2f} \n| time: {:5.2f}s | words: {:3d} | wps: {:5.2f}".format(
            test_loss, elapsed_time, nwords, wps
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
208
209
210
211
        )
    )
    print("=" * 89)

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    if len(model.balance) == 4:
        # Assert that words per second is within 3 standard deviations of the average
        # of five golden runs
        assert wps > 19779.5 - (3 * 167.81)

        print("Peak allocated bytes on cuda:0: {:1d}".format(torch.cuda.memory_stats(0)["allocated_bytes.all.peak"]))
        print("Peak allocated bytes on cuda:1: {:1d}".format(torch.cuda.memory_stats(1)["allocated_bytes.all.peak"]))
        print("Peak allocated bytes on cuda:2: {:1d}".format(torch.cuda.memory_stats(2)["allocated_bytes.all.peak"]))
        print("Peak allocated bytes on cuda:3: {:1d}".format(torch.cuda.memory_stats(3)["allocated_bytes.all.peak"]))

        # Assert that memory usage on each GPU is within 10% of golden run
        # Right-hand-side is golden run KB * KB to bytes conversion * 110%
        assert torch.cuda.memory_stats(0)["allocated_bytes.all.peak"] < 346094 * 1024 * 1.1
        assert torch.cuda.memory_stats(1)["allocated_bytes.all.peak"] < 1251 * 1024 * 1.1
        assert torch.cuda.memory_stats(2)["allocated_bytes.all.peak"] < 2595 * 1024 * 1.1
        assert torch.cuda.memory_stats(3)["allocated_bytes.all.peak"] < 174784 * 1024 * 1.1
        print("No regression detected")


def generate_balance(num_devices, num_layers):
    balance = []
    layers_assigned = 0
    for i in range(num_devices):
        x = (num_layers - layers_assigned) / (num_devices - i)
        if x.is_integer():
            balance.append(int(x))
            layers_assigned += x
        else:
            balance.append(math.ceil(x))
            layers_assigned += math.ceil(x)
    return balance

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
244
245

if __name__ == "__main__":
246
247
248
249
    num_devices = torch.cuda.device_count()
    assert num_devices > 0

    torch.manual_seed(0)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
250
251
252
    device = torch.device("cuda")
    ntokens, train_data, val_data, test_data = get_data(device)
    model, criterion, optimizer = make_model(device, ntokens)
253
254
255
256
    balance = generate_balance(min(num_devices, 4), len(model))
    p = pipe.Pipe(model, balance)
    benchmark_language_model(train_data, val_data, test_data, p, criterion, optimizer, ntokens)
    del p