pipe.py 20.4 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

Tom Birch's avatar
Tom Birch committed
3
import argparse
4
5
6
from collections import defaultdict
from functools import reduce
import gc
7
import logging
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
8
import math
9
import operator
Tom Birch's avatar
Tom Birch committed
10
import os
11
import pprint
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
12
13
import time

Tom Birch's avatar
Tom Birch committed
14
from benchmark_dataset import BenchmarkLMDataset, collate_sentences_lm
15
16
17
import datasets
import models
import numpy
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
18
import torch
Tom Birch's avatar
Tom Birch committed
19
20
from torch.distributed import rpc
import torch.multiprocessing as mp
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
21
import torch.nn as nn
22
from torch.nn.parallel import DistributedDataParallel as DDP
Tom Birch's avatar
Tom Birch committed
23
from torch.utils.data import DataLoader
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
24

25
from fairscale.nn import Pipe
Tom Birch's avatar
Tom Birch committed
26
from fairscale.nn.model_parallel import initialize_model_parallel
27
28
from fairscale.nn.model_parallel.initialize import get_data_parallel_group, get_pipeline_parallel_group
from fairscale.nn.pipe import LazyModule, pipe
Jun Ru Anderson's avatar
Jun Ru Anderson committed
29
from fairscale.optim import GradScaler
30
from fairscale.optim.oss import OSS
31
from fairscale.utils.testing import dist_init, get_worker_map
32

Jun Ru Anderson's avatar
Jun Ru Anderson committed
33
try:
Tom Birch's avatar
Tom Birch committed
34
    from fairscale.optim import Adam  # type: ignore
Jun Ru Anderson's avatar
Jun Ru Anderson committed
35
36
37
38
39
40
41

    can_benchmark = True
except ImportError:
    from torch.optim import Adam  # type: ignore

    can_benchmark = False

42

Tom Birch's avatar
Tom Birch committed
43
44
45
46
47
48
49
def init_random_seed(seed: int):

    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    numpy.random.seed(seed)


50
51
52
53
54
55
56
57
def make_model(args, device, config):
    ninp = config["ninp"]
    nhead = config["nhead"]
    initrange = config["initrange"]
    dropout = config["dropout"]
    vocab_size = config["vocab_size"]
    nhid = config["nhid"]
    lr = config["lr"]
Tom Birch's avatar
Tom Birch committed
58
    ndecoder = args.num_decoder_layers
59

Tom Birch's avatar
Tom Birch committed
60
61
    if args.lazy_construction:
        layers = [
62
63
            LazyModule(lambda: models.EmbeddingLayer(vocab_size, ninp, initrange)),
            LazyModule(lambda: models.PositionalEncodingLayer(ninp, dropout)),
Tom Birch's avatar
Tom Birch committed
64
65
        ]
        for _ in range(ndecoder):
66
            layers.append(LazyModule(lambda: models.TransformerDecoderLayer(ninp, nhead, nhid, dropout)))
Tom Birch's avatar
Tom Birch committed
67

68
        layers.append(LazyModule(lambda: models.LinearLayer(ninp, vocab_size, initrange)))
Tom Birch's avatar
Tom Birch committed
69
70
        model = layers
    else:
71
        model = models.TransformerLMSequntial(vocab_size, ninp, nhead, nhid, dropout, initrange, ndecoder).to(device)
72

73
    def make_adam(params):
74
        if args.ddp_zero:
75
            return OSS(params=params, optim=Adam, group=get_data_parallel_group(), lr=lr)
76
        else:
77
            return Adam(params, lr=lr)
Tom Birch's avatar
Tom Birch committed
78
79

    optimizer = make_adam
80
    return model, optimizer
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
81
82


Tom Birch's avatar
Tom Birch committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
def get_tensors_by_size_bucket():

    size_buckets = defaultdict(int)
    for obj in gc.get_objects():
        if not isinstance(obj, torch.Tensor):
            continue
        if obj.device.type == "cuda":
            size_buckets[(*obj.size(),) + (obj.element_size(),)] += 1

    return size_buckets


def dump_size_buckets(size_buckets, prefix=""):

    total = 0
    for key, value in size_buckets.items():
        this = reduce(operator.mul, key) * value
        total += this
        print(prefix + f"{key} : {value}, {this}")

    print(prefix + f"total = {total}")


last_size_buckets = None
once = True


def safe_rank():
    try:
        return torch.distributed.get_rank()
    except AssertionError:
        return 0


def check_size_buckets():
    global last_size_buckets
    global once
    size_buckets = get_tensors_by_size_bucket()
    if last_size_buckets is not None:
        if size_buckets != last_size_buckets:
            print(f"difference is oustanding tensors: {safe-rank()}")
            dump_size_buckets(last_size_buckets, "old: ")
            dump_size_buckets(size_buckets, "new: ")
        if once:
            print(f"dumping buckets for: {safe_rank()}")
            dump_size_buckets(last_size_buckets, "old: ")
            dump_size_buckets(size_buckets, "new: ")
            once = False
    else:
        print(f"size buckets none on {safe_rank()}")
    last_size_buckets = size_buckets


def dump_cuda_tensors():
    print(f"dumping cuda tensors...")

    for obj in gc.get_objects():
        if not isinstance(obj, torch.Tensor):
            continue
        if obj.device.type == "cuda":
            size_buckets[(*obj.size(),) + (obj.element_size(),)] += 1

    print(f"outstanding cuda tensors:")
    total = 0
    for key, value in size_buckets.items():
        this = reduce(operator.mul, key) * value
        total += this
        print(f"{key} : {value}, {this}")
    print(f"total size = {total}")
    pprint.pprint(torch.cuda.memory_stats())


155
def log_number_of_parameters(model):
Tom Birch's avatar
Tom Birch committed
156
157
158

    num_params = reduce(operator.add, (reduce(operator.mul, x.size()) for x in model.parameters()))
    if model.group:
159
160
161
        total = torch.Tensor([num_params])
        if torch.cuda.is_available():
            total = total.cuda()
162
163
        torch.distributed.all_reduce(total, group=model.group)
        logging.info(
164
            f"training model, #params = {num_params}, group: {model.group.rank()}, grank:"
165
166
167
168
169
            f" {torch.distributed.get_rank()}, sizes {model.group.size()}"
        )
        torch.distributed.barrier()
        if model.group.rank() == 0:
            logging.info(f"total #prams = {total.item()}")
Tom Birch's avatar
Tom Birch committed
170
    else:
171
        logging.info(f"training model, #params = {num_params}")
Tom Birch's avatar
Tom Birch committed
172
173


174
175
176
def get_device(model, index):
    if isinstance(model, DDP):
        model = model.module
177

178
179
180
181
182
183
    if not torch.cuda.is_available():
        return torch.device("cpu")
    if model.devices:
        return model.devices[index]
    else:
        return torch.cuda.current_device()
Tom Birch's avatar
Tom Birch committed
184

185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def get_fake_dataloader(lm_dataloader_len):
    fake_input = {"input": torch.zeros(args.batch_size)}

    class FakeDataset:
        def __getitem__(self, index):
            return fake_input

        def __len__(self):
            return lm_dataloader_len

    return FakeDataset()


def train(data_config, model, benchmark_config, args):
    lm_dataloader = data_config["data"]
    criterion = benchmark_config["criterion"]
    vocab_size = benchmark_config["vocab_size"]
    optimizer = data_config["optimizer"]

    model.train()
    log_number_of_parameters(model)

    total_loss = 0.0
    start_time = time.time()
    word_counter = 0

    optimizer = optimizer(model.parameters())
Tom Birch's avatar
Tom Birch committed
213

214
215
216
217
218
219
220
221
222
223
    pipe_group = model.group

    if args.ddp_zero:
        model = DDP(
            model,
            device_ids=[torch.cuda.current_device()],
            process_group=get_data_parallel_group(),
            find_unused_parameters=False,
        )

224
    # TODO(anj-s): Avoid sending fake data to all replicas except the first and last one.
225
    if pipe_group and pipe_group.rank() != 0 and pipe_group.rank() != (pipe_group.size() - 1):
226
        lm_dataloader = get_fake_dataloader(len(lm_dataloader))
227

Tom Birch's avatar
Tom Birch committed
228
229
230
    for i, batch in enumerate(lm_dataloader):
        if args.max_batch and i > args.max_batch:
            break
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
231
        optimizer.zero_grad()
232
233
        try:
            if (pipe_group is None or pipe_group.rank() == 0) and not args.ddp_zero:
234
                tmp = batch["input"].to(get_device(model, 0))
235
236
237
238
239
240
241
                output = model(tmp)
            else:
                output = model(batch["input"])
        except Exception as e:
            raise RuntimeError(f"training failed on {torch.distributed.get_rank()}") from e

        if pipe_group is None or pipe_group.rank() == pipe_group.size() - 1:
242
            target = batch["target"].to(get_device(model, -1))
Tom Birch's avatar
Tom Birch committed
243
            output = output.to(target.device)
244

Tom Birch's avatar
Tom Birch committed
245
            loss = criterion(output.view(-1, vocab_size), target.view(-1))
246
247
248
249
            if args.ddp_zero:
                ddp_group = get_data_parallel_group()
                torch.distributed.all_reduce(loss, op=torch.distributed.ReduceOp.SUM, group=ddp_group)
                loss /= ddp_group.size()
Tom Birch's avatar
Tom Birch committed
250
            loss.backward()
251
            del target
Tom Birch's avatar
Tom Birch committed
252
        else:
253
254
255
256
            if args.ddp_zero:
                model.module.back_helper(output)
            else:
                model.back_helper(output)
Tom Birch's avatar
Tom Birch committed
257
258
259

        del output

260
        torch.nn.utils.clip_grad_value_(model.parameters(), benchmark_config["clip_value"])
Tom Birch's avatar
Tom Birch committed
261
262
        optimizer.step()

263
        if pipe_group is None or pipe_group.rank() == pipe_group.size() - 1:
Tom Birch's avatar
Tom Birch committed
264
265
266
267
268
269
            total_loss += loss.item()
            log_interval = 1
            word_counter += batch["ntokens"]
            if i % log_interval == 0 and i > 0:
                cur_loss = total_loss / log_interval
                elapsed = time.time() - start_time
Jun Ru Anderson's avatar
Jun Ru Anderson committed
270
                print(
Tom Birch's avatar
Tom Birch committed
271
272
                    "| batch {:5d} | wps {:5.2f} | loss {:5.2f} | ppl {:8.2f}".format(
                        i, word_counter / elapsed, cur_loss, math.exp(cur_loss)
Jun Ru Anderson's avatar
Jun Ru Anderson committed
273
                    )
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
274
                )
Tom Birch's avatar
Tom Birch committed
275
276
277
                word_counter = 0
                total_loss = 0
                start_time = time.time()
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
278
279
280
281
282


def evaluate(eval_model, data_source, criterion, bptt, ntokens):
    eval_model.eval()
    total_loss = 0.0
283
284
285
286
287
288
289

    def get_batch(source, i, bptt):
        seq_len = min(bptt, len(source) - 1 - i)
        data = source[i : i + seq_len]
        target = source[i + 1 : i + 1 + seq_len].view(-1)
        return data, target

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
290
291
292
293
    with torch.no_grad():
        for i in range(0, data_source.size(0) - 1, bptt):
            data, targets = get_batch(data_source, i, bptt)
            output = eval_model(data)
294
            output = output.to(targets.device)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
295
296
297
298
299
300
301
302
303
            output_flat = output.view(-1, ntokens)
            total_loss += len(data) * criterion(output_flat, targets).item()
    return total_loss / (len(data_source) - 1)


def get_number_of_words(data):
    return data.size()[0] * data.size()[1]


304
305
306
307
def benchmark_language_model(model_config, model, benchmark_config, args):
    ntokens, train_data, val_data, test_data = model_config["data"]
    optimizer = model_config["optimizer"]
    criterion = benchmark_config["criterion"]
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
308
309
310
311
    epoch = 1
    bptt = 35
    start_time = time.time()

Jun Ru Anderson's avatar
Jun Ru Anderson committed
312
    print("-" * 110)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
313
    print("| start of epoch {:1d}".format(epoch))
Jun Ru Anderson's avatar
Jun Ru Anderson committed
314
    print("-" * 110)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
315
    epoch_start_time = time.time()
Tom Birch's avatar
Tom Birch committed
316
317
318
    train(train_data, model, criterion, optimizer, bptt, ntokens, args)
    val_loss = 1  # evaluate(model, val_data, criterion, bptt, ntokens)
    print("-" * 89)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
319
    print(
320
321
322
        "| end of epoch {:1d} | time: {:5.2f}s | valid loss {:5.2f} ".format(
            epoch, (time.time() - epoch_start_time), val_loss
        )
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
323
    )
Jun Ru Anderson's avatar
Jun Ru Anderson committed
324
    print("-" * 110)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
325
326
327
328
329

    elapsed_time = time.time() - start_time
    nwords = get_number_of_words(train_data) + get_number_of_words(val_data)
    wps = nwords / elapsed_time

Tom Birch's avatar
Tom Birch committed
330
331
    test_loss = 1  # evaluate(model, test_data, criterion, bptt, ntokens)
    print("=" * 89)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
332
    print(
333
334
        "| end of training | test loss {:5.2f} \n| time: {:5.2f}s | words: {:3d} | wps: {:5.2f}".format(
            test_loss, elapsed_time, nwords, wps
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
335
336
        )
    )
Jun Ru Anderson's avatar
Jun Ru Anderson committed
337
    print("=" * 110)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
338

Jun Ru Anderson's avatar
Jun Ru Anderson committed
339
    if can_benchmark and len(model.balance) == 4:
340
        # Assert that words per second is within 3 standard deviations of the average
Jun Ru Anderson's avatar
Jun Ru Anderson committed
341
        # of six golden runs
342
        assert wps > 36954.4 - (3 * 116.825)
343
344
345
346
347
348
349

        print("Peak allocated bytes on cuda:0: {:1d}".format(torch.cuda.memory_stats(0)["allocated_bytes.all.peak"]))
        print("Peak allocated bytes on cuda:1: {:1d}".format(torch.cuda.memory_stats(1)["allocated_bytes.all.peak"]))
        print("Peak allocated bytes on cuda:2: {:1d}".format(torch.cuda.memory_stats(2)["allocated_bytes.all.peak"]))
        print("Peak allocated bytes on cuda:3: {:1d}".format(torch.cuda.memory_stats(3)["allocated_bytes.all.peak"]))

        # Assert that memory usage on each GPU is within 10% of golden run
350
        # Right-hand-side is golden run bytes * 110%
351
352
353
354
        assert torch.cuda.memory_stats(0)["allocated_bytes.all.peak"] < 4061909504 * 1.1
        assert torch.cuda.memory_stats(1)["allocated_bytes.all.peak"] < 4050944 * 1.1
        assert torch.cuda.memory_stats(2)["allocated_bytes.all.peak"] < 10427392 * 1.1
        assert torch.cuda.memory_stats(3)["allocated_bytes.all.peak"] < 2031824896 * 1.1
355
356
357
        print("No regression detected")


358
359
360
361
362
363
364
365
366
367
368
def generate_balance_weighted(num_devices, num_layers, fraction=0.5):
    balance = []
    layers_assigned = 0
    average_count = num_layers / num_devices
    last_layers = int(average_count * fraction)

    balance = generate_balance(num_devices - 1, num_layers - last_layers)
    balance.append(last_layers)
    return balance


369
370
371
372
373
374
375
376
377
378
379
380
381
def generate_balance(num_devices, num_layers):
    balance = []
    layers_assigned = 0
    for i in range(num_devices):
        x = (num_layers - layers_assigned) / (num_devices - i)
        if x.is_integer():
            balance.append(int(x))
            layers_assigned += x
        else:
            balance.append(math.ceil(x))
            layers_assigned += math.ceil(x)
    return balance

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
382

383
384
385
def make_model_and_data(args, config=None):
    """Return a dict with the given model, dataset and optimizer."""

386
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
387
388
    if args.use_synthetic_data:
        model, optimizer = make_model(args, device, config)
Tom Birch's avatar
Tom Birch committed
389
390
391
392
        lm_dataset = BenchmarkLMDataset()
        lm_dataloader = DataLoader(
            lm_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0, collate_fn=collate_sentences_lm
        )
393
        return {"model": model, "optimizer": optimizer, "data": lm_dataloader}
Tom Birch's avatar
Tom Birch committed
394
    else:
395
396
397
398
        data = datasets.get_wikitext2_data(device)
        ntokens, _, _, _ = data
        config["vocab_size"] = ntokens
        model, optimizer = make_model(args, device, ntokens)
Tom Birch's avatar
Tom Birch committed
399
400
401
402
403
404
405
        return {
            "model": model,
            "optimizer": optimizer,
            "data": data,
        }


406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
def create_benchmark_config(model_name):
    """Return a dict with configurations required for benchmarking `model_name` model."""

    if model_name == "seq_pred":
        return {
            "vocab_size": 10000,
            "ninp": 2048,  # embedding dimension
            "nhid": 2048,  # the dimension of the feedforward network model in nn.TransformerEncoder
            "nhead": 32,  # the number of heads in the multiheadattention models
            "dropout": 0,
            "initrange": 0.1,
            "criterion": nn.CrossEntropyLoss(),
            "lr": 0.01,  # learning rate
            "scaler": GradScaler(),
            "clip_value": 0.05,
        }


def benchmark_single_process(args):
    """Benchmark a given model using a single process and multiple devices."""

427
    num_devices = torch.cuda.device_count() if torch.cuda.is_available() else 1
428
    assert num_devices > 0
Tom Birch's avatar
Tom Birch committed
429
430
    init_random_seed(0)

431
432
433
    benchmark_config = create_benchmark_config(args.model_name)
    model_config = make_model_and_data(args, config=benchmark_config)
    model = model_config["model"]
Tom Birch's avatar
Tom Birch committed
434

435
    balance = generate_balance(min(num_devices, 4), len(model))
Tom Birch's avatar
Tom Birch committed
436
437
438
    p = pipe.Pipe(
        model, balance, chunks=args.chunks, pipelined_backward=args.pipelined_backward, checkpoint=args.checkpoint
    )
439
    del model
440
    del model_config["model"]
Tom Birch's avatar
Tom Birch committed
441

442
443
    if args.use_synthetic_data:
        train(model_config, p, benchmark_config, args)
Tom Birch's avatar
Tom Birch committed
444
    else:
445
        benchmark_language_model(model_config, p, benchmark_config, args)
Tom Birch's avatar
Tom Birch committed
446
447
448
449


def run_mp_worker(args, available_workers):

450
451
452
    benchmark_config = create_benchmark_config(args.model_name)
    model_config = make_model_and_data(args, config=benchmark_config)
    model = model_config["model"]
Tom Birch's avatar
Tom Birch committed
453

454
    balance = generate_balance_weighted(get_pipeline_parallel_group().size(), len(model), 0.8)
Tom Birch's avatar
Tom Birch committed
455
456
457
    p = pipe.Pipe(
        model,
        balance,
458
        style=Pipe.AsyncSchedule,
Tom Birch's avatar
Tom Birch committed
459
460
        chunks=args.chunks,
        worker_map=get_worker_map(),
461
        input_device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu"),
Tom Birch's avatar
Tom Birch committed
462
463
        pipelined_backward=args.pipelined_backward,
        checkpoint=args.checkpoint,
464
        # TODO(anj-s): Do we need to comment this out? loss_fn=benchmark_config["criterion"],
465
466
467
    )
    if torch.cuda.is_available():
        p = p.cuda()
Tom Birch's avatar
Tom Birch committed
468
469
470
471
    if args.all_at_once and p.pipeline:
        print(f"running all at once")
        p.pipeline.all_at_once = True

472
473
    if args.use_synthetic_data:
        train(model_config, p, benchmark_config, args)
Tom Birch's avatar
Tom Birch committed
474
    else:
475
        benchmark_language_model(model_config, p, benchmark_config, args)
Tom Birch's avatar
Tom Birch committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511


def run_worker(rank, world_size, args):
    if args.world_size != 0:
        world_size = args.world_size
    dist_init(rank + args.rank_base, world_size, hostname=args.host)
    initialize_model_parallel(1, world_size)
    init_random_seed(0)
    run_mp_worker(args, world_size)

    rpc.shutdown()
    torch.distributed.destroy_process_group()


def bench_multi_process(args, all_at_once=False):
    if args.local_world_size != 0:
        world_size = args.local_world_size
    else:
        world_size = min(torch.cuda.device_count(), 2)
    mp.spawn(run_worker, args=(world_size, args), nprocs=world_size, join=True)


best_device_map = {
    0: "mlx5_0:1",
    1: "mlx5_0:1",
    2: "mlx5_1:1",
    3: "mlx5_1:1",
    4: "mlx5_2:1",
    5: "mlx5_2:1",
    6: "mlx5_3:1",
    7: "mlx5_3:1",
}


def bench_mpi(args):
    guess_rank = int(os.environ["OMPI_COMM_WORLD_RANK"])
512
513
514
    world_size = int(os.environ["OMPI_COMM_WORLD_SIZE"])
    local_rank = int(os.environ["OMPI_COMM_WORLD_LOCAL_RANK"])
    os.environ["UCX_NET_DEVICES"] = best_device_map[local_rank]
Tom Birch's avatar
Tom Birch committed
515
516

    os.environ["MASTER_ADDR"] = args.host
517
    os.environ["MASTER_PORT"] = "10638"
Tom Birch's avatar
Tom Birch committed
518
519
520
    if args.socket_name:
        os.environ["GLOO_SOCKET_IFNAME"] = args.socket_name
        os.environ["TP_SOCKET_IFNAME"] = args.socket_name
521
522
523
524
525

    torch.distributed.init_process_group(backend="gloo", rank=guess_rank, world_size=world_size)

    os.environ["MASTER_ADDR"] = args.host
    os.environ["MASTER_PORT"] = "10639"
Tom Birch's avatar
Tom Birch committed
526
527
528
    init_method = f"tcp://{os.environ['MASTER_ADDR']}:{os.environ['MASTER_PORT']}"
    rank = torch.distributed.get_rank()
    world_size = torch.distributed.get_world_size()
529
    torch.cuda.set_device(local_rank % torch.cuda.device_count())
Tom Birch's avatar
Tom Birch committed
530
531
532
533
534
535
536
537
538

    rpc.init_rpc(
        f"Test{rank}",
        rank=rank,
        world_size=world_size,
        backend=rpc.BackendType.PROCESS_GROUP,
        rpc_backend_options=rpc.ProcessGroupRpcBackendOptions(rpc_timeout=20, init_method=init_method),
    )

539
540
541
542
543
544
    backends = {"model_parallel_backend": "nccl", "pipeline_backend": "mpi", "ddp_backend": "nccl"}

    if args.ddp_zero:
        initialize_model_parallel(1, 4, **backends)
    else:
        initialize_model_parallel(1, world_size, **backends)
Tom Birch's avatar
Tom Birch committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
    init_random_seed(0)

    run_mp_worker(args, world_size)

    rpc.shutdown()
    torch.distributed.destroy_process_group()


parser = argparse.ArgumentParser(description="benchmark")
parser.add_argument("--local-world-size", "-l", type=int, default=0, help="local world size")
parser.add_argument("--world-size", "-w", type=int, default=0, help="world size")
parser.add_argument("--rank-base", "-r", type=int, help="rank base", default=0)
parser.add_argument("--host", "-o", type=str, default="localhost", help="hostname")
parser.add_argument("--no-mpi", action="store_true", default=False, help="disable mpi")
parser.add_argument("--chunks", type=int, default=1, help="number of microbatches per batch")
parser.add_argument("--batch-size", type=int, default=8, help="size of a batch")
parser.add_argument("--all-at-once", action="store_true", default=False, help="do backward pass on whole batch at once")
parser.add_argument("--max-batch", type=int, default=4, help="Max number of batches")
parser.add_argument("--socket-name", type=str, default=None, help="socket ifname for gloo/tp")
parser.add_argument("--num-decoder-layers", type=int, default=10, help="Number of decoder layers in the model")
565
parser.add_argument("--ddp-zero", action="store_true", default=False, help="enable ddp")
Tom Birch's avatar
Tom Birch committed
566
567
568
569
570
571
572
573
574
575
576
577
parser.add_argument(
    "--lazy-construction", action="store_true", default=False, help="Number of decoder layers in the model"
)
parser.add_argument(
    "--checkpoint", default="never", choices=["always", "except_last", "never"], help="Checkpointing strategy for pipe"
)
parser.add_argument(
    "--pipelined-backward", dest="pipelined_backward", action="store_true", help="Pipelined backward pass"
)
parser.add_argument(
    "--no-pipelined-backward", dest="pipelined_backward", action="store_false", help="Pipelined backward pass"
)
578
579
580
581
parser.add_argument("--use_synthetic_data", default=True, help="Uses synthetic data for a sample training run.")
parser.add_argument(
    "--model_name", default="seq_pred", choices=["seq_pred", "transformer"], help="Model used to benchmark pipe."
)
Tom Birch's avatar
Tom Birch committed
582
583
584
585
parser.set_defaults(pipelined_backward=True)

if __name__ == "__main__":
    args = parser.parse_args()
586
    # TODO(anj-s): Add support for multiprocess benchmarking.
Tom Birch's avatar
Tom Birch committed
587
588
    if args.no_mpi or "OMPI_COMM_WORLD_RANK" not in os.environ:
        print(f"Running benchmark with args: {args}")
589
        benchmark_single_process(args)
Tom Birch's avatar
Tom Birch committed
590
591
592
593
    else:
        if os.environ["OMPI_COMM_WORLD_RANK"] == "0":
            print(f"Running benchmark with args: {args}")
        bench_mpi(args)