Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
fairscale
Commits
a842a927
Unverified
Commit
a842a927
authored
Nov 18, 2020
by
Yuanyuan (Ana) Shen
Committed by
GitHub
Nov 18, 2020
Browse files
[feat] Add CPU support for pipe.py benchmarks (#188)
* Add CPU support for pipe.py benchmarks, CUDA-free
parent
f80b303c
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
10 deletions
+18
-10
benchmarks/pipe.py
benchmarks/pipe.py
+17
-9
fairscale/nn/pipe/pipe.py
fairscale/nn/pipe/pipe.py
+1
-1
No files found.
benchmarks/pipe.py
View file @
a842a927
...
...
@@ -283,7 +283,9 @@ def train(lm_dataloader, model, criterion, optimizer, vocab_size, args):
num_params
=
reduce
(
operator
.
add
,
(
reduce
(
operator
.
mul
,
x
.
size
())
for
x
in
model
.
parameters
()))
if
model
.
group
:
total
=
torch
.
Tensor
([
num_params
]).
cuda
()
total
=
torch
.
Tensor
([
num_params
])
if
torch
.
cuda
.
is_available
():
total
=
total
.
cuda
()
torch
.
distributed
.
all_reduce
(
total
,
group
=
model
.
group
)
logging
.
info
(
f
"training model, #prams =
{
num_params
}
, group:
{
model
.
group
.
rank
()
}
, grank:"
...
...
@@ -305,6 +307,8 @@ def train(lm_dataloader, model, criterion, optimizer, vocab_size, args):
if
isinstance
(
model
,
DDP
):
model
=
model
.
module
if
not
torch
.
cuda
.
is_available
():
return
torch
.
device
(
"cpu"
)
if
model
.
devices
:
return
model
.
devices
[
0
]
else
:
...
...
@@ -313,6 +317,9 @@ def train(lm_dataloader, model, criterion, optimizer, vocab_size, args):
def
get_last_device
(
model
):
if
isinstance
(
model
,
DDP
):
model
=
model
.
module
if
not
torch
.
cuda
.
is_available
():
return
torch
.
device
(
"cpu"
)
if
model
.
devices
:
return
model
.
devices
[
-
1
]
else
:
...
...
@@ -491,8 +498,8 @@ def generate_balance(num_devices, num_layers):
def
make_model_and_data
(
args
,
device
,
new_data
:
bool
=
True
):
device
=
torch
.
device
(
"cuda"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"cpu"
)
if
new_data
:
device
=
torch
.
device
(
"cuda"
)
vocab_size
=
10000
model
,
criterion
,
optimizer
,
scaler
=
make_model
(
args
,
device
,
vocab_size
)
lm_dataset
=
BenchmarkLMDataset
()
...
...
@@ -507,7 +514,6 @@ def make_model_and_data(args, device, new_data: bool = True):
"vocab_size"
:
vocab_size
,
}
else
:
device
=
torch
.
device
(
"cuda"
)
data
=
get_data
(
device
)
ntokens
,
train_data
,
val_data
,
test_data
=
data
model
,
criterion
,
optimizer
,
scaler
=
make_model
(
args
,
device
,
ntokens
)
...
...
@@ -520,10 +526,10 @@ def make_model_and_data(args, device, new_data: bool = True):
def
bench_single_process
(
args
):
num_devices
=
torch
.
cuda
.
device_count
()
num_devices
=
torch
.
cuda
.
device_count
()
if
torch
.
cuda
.
is_available
()
else
1
assert
num_devices
>
0
init_random_seed
(
0
)
device
=
torch
.
device
(
"cuda"
)
device
=
torch
.
device
(
"cuda"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"cpu"
)
new_data
=
True
...
...
@@ -557,12 +563,13 @@ def run_mp_worker(args, available_workers):
style
=
Pipe
.
AsyncSchedule
,
chunks
=
args
.
chunks
,
worker_map
=
get_worker_map
(),
input_device
=
torch
.
cuda
.
current_
device
(),
input_device
=
torch
.
device
(
"cuda"
)
if
torch
.
cuda
.
is_available
()
else
torch
.
device
(
"cpu"
),
pipelined_backward
=
args
.
pipelined_backward
,
checkpoint
=
args
.
checkpoint
,
# loss_fn=blob["criterion"],
).
cuda
()
)
if
torch
.
cuda
.
is_available
():
p
=
p
.
cuda
()
if
args
.
all_at_once
and
p
.
pipeline
:
print
(
f
"running all at once"
)
p
.
pipeline
.
all_at_once
=
True
...
...
@@ -678,7 +685,8 @@ parser.set_defaults(pipelined_backward=True)
if
__name__
==
"__main__"
:
args
=
parser
.
parse_args
()
# bench_multi_process(args, all_at_once=True)
bench_multi_process
(
args
,
all_at_once
=
True
)
if
args
.
no_mpi
or
"OMPI_COMM_WORLD_RANK"
not
in
os
.
environ
:
print
(
f
"Running benchmark with args:
{
args
}
"
)
bench_single_process
(
args
)
...
...
fairscale/nn/pipe/pipe.py
View file @
a842a927
...
...
@@ -736,7 +736,7 @@ class Pipe(Module):
from
.phony
import
get_phony
phony
=
get_phony
(
torch
.
device
(
torch
.
cuda
.
current_device
()),
requires_grad
=
True
)
phony
=
get_phony
(
torch
.
device
(
torch
.
cuda
.
current_device
()
if
torch
.
cuda
.
is_available
()
else
"cpu"
),
requires_grad
=
True
)
output
=
PipelinedBackwardPass
.
apply
(
output
,
batches
,
phony
,
True
)
# self.retain_graph)
else
:
output
=
microbatch
.
gather
(
batches
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment