test_pipe.py 23.5 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
from copy import deepcopy
import os
import time

import pytest
import torch
from torch import nn

29
30
31
from fairscale.nn.model_parallel.initialize import get_pipeline_parallel_group
from fairscale.nn.pipe import AsyncPipe
from fairscale.nn.pipe.types import LazyModule
32
33
from fairscale.utils import torch_version
from fairscale.utils.testing import get_worker_map, torch_spawn
Tom Birch's avatar
Tom Birch committed
34
35
36


@torch_spawn([2])
37
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
38
def parameters(pipe_class):
Tom Birch's avatar
Tom Birch committed
39
    model = nn.Sequential(nn.Linear(1, 1))
40
    pipe = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    if torch.distributed.get_rank() == 0:
        assert list(pipe.parameters()) != []
    else:
        assert list(pipe.parameters()) == []


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
        torch.distributed.broadcast(t, 0)
    else:
        t = torch.empty(100).cuda()
        torch.distributed.broadcast(t, 0)

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband2():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
67
        torch.distributed.send(t, 1, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
68
69
    else:
        t = torch.empty(100).cuda()
70
        torch.distributed.recv(t, 0, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband3():
    t = torch.Tensor(range(100)).cuda()
    torch.distributed.all_reduce(t, op=torch.distributed.ReduceOp.SUM)
    assert torch.equal(t, torch.Tensor(range(0, 200, 2)).cuda())


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
def mpi():
    seed = 1234
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    torch.distributed.barrier()
    tensor_size = (1024, 1024, 10)
    torch.cuda.set_device(torch.distributed.get_rank())  # need to pin device or ucx gets unhappy

    if torch.distributed.get_rank() == 0:
        # t = torch.Tensor(range(10)).cuda(0)
        t = torch.rand(*tensor_size).cuda(0)
        torch.distributed.send(t, 1, tag=1234)
    else:
        t = torch.empty(*tensor_size).cuda(1)
        torch.distributed.recv(t, 0, tag=1234)
        t2 = torch.rand(*tensor_size).cuda(1)

        assert torch.equal(t, t2)


@torch_spawn([1])
108
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
109
def public_attrs(pipe_class):
Tom Birch's avatar
Tom Birch committed
110
111
    model = nn.Sequential(nn.Linear(1, 1))

112
113
114
115
116
117
118
    pipe = pipe_class(
        model,
        balance=(1,),
        worker_map=get_worker_map(),
        chunks=42,
        checkpoint="always",
    )
Tom Birch's avatar
Tom Birch committed
119
120
121
122
123
124
125
126
127
128

    assert pipe.balance == [1]
    assert pipe.chunks == 42
    assert isinstance(pipe.chunks, int)
    assert pipe.checkpoint == "always"
    assert isinstance(pipe.checkpoint, str)


@torch_spawn([2])
@pytest.mark.parametrize("balance", [[2], [1, 1]])
129
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
130
def sequential_like(balance, pipe_class):
Tom Birch's avatar
Tom Birch committed
131
132
133
134
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
135
    model = pipe_class(model, balance, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

    if balance == [2]:
        if torch.distributed.get_rank() == 0:
            assert len(model) == 2
            assert list(model) == [a, b]

            assert model[0] is a
            assert model[1] is b
            with pytest.raises(IndexError):
                _ = model[2]

            assert model[-1] is b
            assert model[-2] is a
        else:
            assert len(model) == 0
            assert list(model) == []
    else:
        assert len(model) == 1
        if torch.distributed.get_rank() == 0:
            assert list(model) == [a]
            assert model[0] is a
            assert model[-1] is a
        else:
            assert list(model) == [b]
            assert model[0] is b
            assert model[-1] is b

        with pytest.raises(IndexError):
            _ = model[1]


@torch_spawn([1])
168
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
169
def balance_wrong_length(pipe_class):
Tom Birch's avatar
Tom Birch committed
170
171
172
173
174
175
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
176
        pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
177
178

    with pytest.raises(ValueError):
179
        pipe_class(model, balance=[3], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
180
181
182


@torch_spawn([2])
183
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
184
def balance_less_than_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
185
186
187
188
189
190
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
191
        pipe_class(model, balance=[0, 2], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
192
193

    with pytest.raises(ValueError):
194
        pipe_class(model, balance=[-1, 3], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
195
196
197


@torch_spawn([1])
198
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
199
def chunks_less_than_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
200
201
202
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError):
203
        pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=0)
Tom Birch's avatar
Tom Birch committed
204
205

    with pytest.raises(ValueError):
206
        pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=-1)
Tom Birch's avatar
Tom Birch committed
207
208
209


@torch_spawn([1])
210
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
211
def too_few_devices(pipe_class):
Tom Birch's avatar
Tom Birch committed
212
213
214
215
    model = nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1))

    with pytest.raises(IndexError):
        # len(balance) > len(group.size())
216
        model = pipe_class(model, balance=[1, 1, 1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
217
218
219


@torch_spawn([1])
220
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
221
def batch_size_indivisible(pipe_class):
Tom Birch's avatar
Tom Birch committed
222
    model = nn.Sequential(nn.Linear(1, 1))
223
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
224
225
226
227
228
229
230
231
232

    with pytest.warns(None) as record:
        model(torch.rand(7, 1))

    # Indivisible batch size is legal.
    assert not record


@torch_spawn([1])
233
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
234
def batch_size_small(pipe_class):
Tom Birch's avatar
Tom Birch committed
235
    model = nn.Sequential(nn.Linear(1, 1))
236
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
237
238
239
240
241
242
243
244
245

    with pytest.warns(None) as record:
        model(torch.rand(2, 1))

    # Batch size smaller than chunks is legal.
    assert not record


@torch_spawn([1])
246
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
247
def checkpoint_mode(pipe_class):
Tom Birch's avatar
Tom Birch committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    def count_grad_fn(grad_fn, name, visited=set()):
        if grad_fn in visited:
            return 0
        visited.add(grad_fn)

        if grad_fn is None:
            return 0
        if grad_fn.__class__.__name__ == name:
            return 1

        counter = 0
        for next_grad_fn, _ in grad_fn.next_functions:
            counter += count_grad_fn(next_grad_fn, name, visited=visited)
        return counter

    model = nn.Sequential(nn.Linear(1, 1))
    input = torch.rand(2, 1)

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    always = pipe_class(
        model,
        balance=[1],
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint="always",
    )
    except_last = pipe_class(
        model,
        balance=[1],
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint="except_last",
    )
    never = pipe_class(
        model,
        balance=[1],
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint="never",
    )
Tom Birch's avatar
Tom Birch committed
287
288
289
290
291
292
293
294
295
296
297

    always_output = always(input)
    except_last_output = except_last(input)
    never_output = never(input)

    assert count_grad_fn(always_output.grad_fn, "CheckpointBackward") == 2
    assert count_grad_fn(except_last_output.grad_fn, "CheckpointBackward") == 1
    assert count_grad_fn(never_output.grad_fn, "CheckpointBackward") == 0


@torch_spawn([1])
298
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
299
def checkpoint_mode_invalid(pipe_class):
Tom Birch's avatar
Tom Birch committed
300
301
302
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError, match="checkpoint is not one of 'always', 'except_last', or 'never'"):
303
        pipe_class(
304
305
306
307
308
            model,
            balance=[1],
            worker_map=get_worker_map(),
            chunks=2,
            checkpoint="INVALID_CHECKPOINT",
Tom Birch's avatar
Tom Birch committed
309
310
311
312
        )


@torch_spawn([1])
313
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
314
def checkpoint_mode_when_chunks_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
315
316
317
    model = nn.Sequential(nn.Linear(1, 1))

    # All checkpoint modes are fine.
318
    pipe_class(
319
320
321
322
323
        model,
        balance=[1],
        worker_map=get_worker_map(),
        chunks=1,
        checkpoint="except_last",
324
    )
325
326
    pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="always")
    pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="never")
Tom Birch's avatar
Tom Birch committed
327
328
329


@torch_spawn([1])
330
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
331
def checkpoint_eval(pipe_class):
Tom Birch's avatar
Tom Birch committed
332
    model = nn.Sequential(nn.Linear(1, 1))
333
334
335
336
337
338
    model = pipe_class(
        model,
        balance=[1],
        worker_map=get_worker_map(),
        chunks=2,
    )
Tom Birch's avatar
Tom Birch committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    input = torch.rand(2, 1)

    def find_grad_fn(grad_fn, name):
        if grad_fn is None:
            return False
        if grad_fn.__class__.__name__ == name:
            return True
        for next_grad_fn, _ in grad_fn.next_functions:
            if find_grad_fn(next_grad_fn, name):
                return True
        return False

    model.train()
    train_output = model(input)
    assert find_grad_fn(train_output.grad_fn, "CheckpointBackward")
    assert find_grad_fn(train_output.grad_fn, "RecomputeBackward")

    model.eval()
    eval_output = model(input)
    assert not find_grad_fn(eval_output.grad_fn, "CheckpointBackward")
    assert not find_grad_fn(eval_output.grad_fn, "RecomputeBackward")


@torch_spawn([2])
363
@pytest.mark.xfail(torch_version() < (1, 6, 0), reason="Doesn't work on torch < 1.6.0", strict=True)
364
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
365
def checkpoint_non_float_input(pipe_class):
Tom Birch's avatar
Tom Birch committed
366
367
368
369
370
371
372
373
374
    class ForkNonFloat(nn.Module):
        def forward(self, input):
            return (input * 2, torch.tensor([False]))

    class JoinNonFloat(nn.Module):
        def forward(self, input):
            return input[0] * 2

    model = nn.Sequential(ForkNonFloat(), JoinNonFloat())
375
376
377
378
379
380
381
    model = pipe_class(
        model,
        balance=[1, 1],
        worker_map=get_worker_map(),
        chunks=1,
        checkpoint="always",
    )
Tom Birch's avatar
Tom Birch committed
382
383
384
385
386
387
388

    input = torch.rand(1, requires_grad=True)
    output = model(input)
    if model.group.rank() == 1:
        # with torch.autograd.detect_anomaly():
        output.backward()

389
390
    torch.distributed.barrier()

Tom Birch's avatar
Tom Birch committed
391
392

@torch_spawn([1])
393
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
394
def no_grad(pipe_class):
Tom Birch's avatar
Tom Birch committed
395
    model = nn.Sequential(nn.Linear(1, 1))
396
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2)
Tom Birch's avatar
Tom Birch committed
397
398
399
400
401
402
403
404
405
406
407
    input = torch.rand(2, 1)

    latent = None

    def hook(module, input, output):
        _ = module
        _ = input

        nonlocal latent
        latent = output

408
409
    partition = model.partition
    partition.register_forward_hook(hook)
Tom Birch's avatar
Tom Birch committed
410
411
412
413
414
415
416
417

    with torch.no_grad():
        model(input)

    assert latent.grad_fn is None


@torch_spawn([1])
418
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
419
def exception(pipe_class):
Tom Birch's avatar
Tom Birch committed
420
421
422
423
424
425
426
427
    class ExpectedException(Exception):
        pass

    class Raise(nn.Module):
        def forward(self, *_):
            raise ExpectedException()

    model = nn.Sequential(Raise())
428
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
429
430
431
432
433
434
435

    with pytest.raises(ExpectedException):
        model(torch.rand(1))


# FIXME(tom) should probably signal to all hosts in group to stop
@torch_spawn([4])
436
@pytest.mark.skipif(torch.cuda.is_available() and torch.cuda.device_count() < 4, reason="Not enough GPUs")
Tom Birch's avatar
Tom Birch committed
437
@pytest.mark.xfail(strict=True)
438
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
439
def exception_early_stop_asap(pipe_class):
Tom Birch's avatar
Tom Birch committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    """Even the first partitions have finished to process, the partition before
    the failed partition hould be killed as soon as possible.
    """

    class ExpectedExceptio(Exception):
        pass

    class Pass(nn.Module):
        def forward(self, x):
            return x

    counter = 0

    class Counter(nn.Module):
        def forward(self, x):
            time.sleep(0.1)

            nonlocal counter
            counter += 1

            return x

    class Raise(nn.Module):
        def forward(self, x):
            raise ExpectedException()

    model = nn.Sequential(Pass(), Pass(), Counter(), Raise())
467
    model = pipe_class(model, [1, 1, 1, 1], worker_map=get_worker_map(), chunks=3)
Tom Birch's avatar
Tom Birch committed
468
469
470
471
472
473
474
475
476

    with pytest.raises(ExpectedException):
        model(torch.rand(3))

    # If the early stop doesn't work, it would be 3 instead.
    assert counter == 2


@torch_spawn([1])
477
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
478
def input_pair(pipe_class):
Tom Birch's avatar
Tom Birch committed
479
480
481
482
483
484
485
486
487
488
489
    class Two(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc_a = nn.Linear(1, 1)
            self.fc_b = nn.Linear(1, 1)

        def forward(self, a_and_b):
            a, b = a_and_b
            return (self.fc_a(a), self.fc_b(b))

    model = nn.Sequential(Two())
490
491
492
493
494
495
    model = pipe_class(
        model,
        balance=[1],
        worker_map=get_worker_map(),
        chunks=2,
    )
Tom Birch's avatar
Tom Birch committed
496
497
498
499
500
501
502
503
504
505
506
507
508

    a = torch.rand(10, 1, requires_grad=True)
    b = torch.rand(10, 1, requires_grad=True)

    a_out, b_out = model((a, b))
    loss = (a_out + b_out).mean()
    loss.backward()

    assert a.grad is not None
    assert b.grad is not None


@torch_spawn([1])
509
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
510
def input_singleton(pipe_class):
Tom Birch's avatar
Tom Birch committed
511
512
513
514
515
516
517
518
519
520
    class One(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc = nn.Linear(1, 1)

        def forward(self, only_a):
            (a,) = only_a
            return (self.fc(a),)

    model = nn.Sequential(One())
521
522
523
524
525
526
    model = pipe_class(
        model,
        balance=[1],
        worker_map=get_worker_map(),
        chunks=2,
    )
Tom Birch's avatar
Tom Birch committed
527
528
529
530
531
532
533
534
535
536
537
538

    a = torch.rand(10, 1, requires_grad=True)

    (a_out,) = model((a,))
    loss = a_out.mean()
    loss.backward()

    assert all(p.grad is not None for p in model.parameters())
    assert a.grad is not None


@torch_spawn([1])
539
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
540
def input_varargs(pipe_class):
Tom Birch's avatar
Tom Birch committed
541
    model = nn.Sequential(nn.Linear(1, 1))
542
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
543
544
545
546
547
548
549
550
551
552

    a = torch.rand(1)
    b = torch.rand(1)

    # TypeError: forward() takes 2 positional arguments but 3 were given
    with pytest.raises(TypeError):
        model(a, b)


@torch_spawn([1])
553
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
554
def non_tensor(pipe_class):
Tom Birch's avatar
Tom Birch committed
555
556
557
558
559
    class NonTensor(nn.Module):
        def forward(self, _):
            return "hello"

    model = nn.Sequential(NonTensor())
560
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
561
562
563
564
565
566
567
568
569
570
571
572
    x = torch.rand(1)

    # TypeError: expected Tensor as element 0 in argument 0, but got str
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model("hello")


@torch_spawn([1])
573
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
574
def non_tensor_tuple(pipe_class):
Tom Birch's avatar
Tom Birch committed
575
576
577
578
579
    class NonTensorTuple(nn.Module):
        def forward(self, x):
            return (x, "hello")

    model = nn.Sequential(NonTensorTuple())
580
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
    x = torch.rand(1)

    # TypeError: CheckpointBackward.forward: expected Variable (got str) for return value 1
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model((x, "hello"))


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
@pytest.mark.parametrize("lazy", [True, False])
595
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
596
def deferred_batch_norm(checkpoint, lazy, pipe_class):
Tom Birch's avatar
Tom Birch committed
597
598
599
600
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
601
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
602
603
    else:
        model = nn.Sequential(pipe_bn)
604
    pipe = pipe_class(
605
606
607
608
609
610
        model,
        balance=[1],
        worker_map=get_worker_map(),
        chunks=2,
        checkpoint=checkpoint,
        deferred_batch_norm=True,
Tom Birch's avatar
Tom Birch committed
611
612
613
614
615
616
617
618
619
620
621
622
623
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert torch.allclose(pipe[0].running_mean, bn.running_mean, atol=1e-4)
    assert torch.allclose(pipe[0].running_var, bn.running_var, atol=1e-4)


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always"])
@pytest.mark.parametrize("lazy", [True, False])
624
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
625
def deferred_batch_norm_params(checkpoint, lazy, pipe_class):
Tom Birch's avatar
Tom Birch committed
626
627
628
629
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
630
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
631
632
    else:
        model = nn.Sequential(pipe_bn)
633
    pipe = pipe_class(
634
635
636
637
638
639
        model,
        balance=[1],
        worker_map=get_worker_map(),
        chunks=1,
        checkpoint=checkpoint,
        deferred_batch_norm=True,
Tom Birch's avatar
Tom Birch committed
640
641
642
643
644
645
646
647
648
649
650
651
652
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert pipe[0].weight.grad is not None
    assert pipe[0].bias.grad is not None

    assert torch.allclose(pipe[0].weight.grad, bn.weight.grad, atol=1e-4)
    assert torch.allclose(pipe[0].bias.grad, bn.bias.grad, atol=1e-4)


653
@torch_spawn([4])
654
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
655
def devices(pipe_class):
Tom Birch's avatar
Tom Birch committed
656
657
658
659
660
661
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)
    c = nn.Linear(1, 1)

    # There are extra two ranks.
    model = nn.Sequential(a, b, c)
662
    model = pipe_class(model, [1, 1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
663
664

    # Extra devices must be discarded.
665
    if model.group.rank() == 3:
Tom Birch's avatar
Tom Birch committed
666
667
668
669
        assert model.pipeline is None


@torch_spawn([2])
670
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
671
def partitions(pipe_class):
Tom Birch's avatar
Tom Birch committed
672
673
674
675
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
676
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
677

678
    assert isinstance(model.partition, nn.Sequential)
Tom Birch's avatar
Tom Birch committed
679

680
    if model.group.rank() == 0:
681
        assert model[0].weight == a.weight
682
    else:
683
        assert model[0].weight == b.weight
Tom Birch's avatar
Tom Birch committed
684
685
686
687


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
688
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
689
def deny_moving(pipe_class):
Tom Birch's avatar
Tom Birch committed
690
691
692
693
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
694
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711

    model.cuda()
    model.cpu()
    model.to(torch.device("cuda"))
    model.to(0)
    model.to("cuda")
    model.to(device=0)
    model.to(torch.rand(1))
    model.to(tensor=torch.rand(1))

    # Casting is allowed.
    model.half()
    model.to(torch.double)
    model.to(dtype=torch.float)


@torch_spawn([1])
712
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
713
def empty_module(pipe_class):
Tom Birch's avatar
Tom Birch committed
714
715
    # Empty sequential module is not illegal.
    model = nn.Sequential()
716
    model = pipe_class(model, [], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
717
718
719
720

    assert model(torch.tensor([42])) == torch.tensor([42])
    assert model((torch.tensor([42]),)) == (torch.tensor([42]),)

721
    # But only tensor or tensors is legal in MultiProcessPipe.
Tom Birch's avatar
Tom Birch committed
722
723
724
725
726
727

    with pytest.raises(TypeError):
        model(42)


@torch_spawn([2])
728
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
729
@pytest.mark.skip(reason="TODO(msb) handle named_children")
730
def named_children(pipe_class):
Tom Birch's avatar
Tom Birch committed
731
732
733
734
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(OrderedDict([("a", a), ("b", b)]))
735
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
736
737

    names = set(n for n, _ in model.named_modules())
738
739
740
741
    if model.group.rank() == 0:
        assert "0.a" in names
    else:
        assert "0.b" in names
Tom Birch's avatar
Tom Birch committed
742

743
    # MultiProcessPipe doesn't support __getattr__. Unlike nn.Sequential, MultiProcessPipe requires
Tom Birch's avatar
Tom Birch committed
744
745
746
747
748
749
    # several methods in its namespace.
    with pytest.raises(AttributeError):
        model.a


@torch_spawn([1])
750
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
751
def recommend_auto_balance(pipe_class):
752
    with pytest.raises(ValueError):
Tom Birch's avatar
Tom Birch committed
753
        # module and sum of balance have differen length (module: 0, sum of balance: 1)
754
        pipe_class(nn.Sequential(), [1])
Tom Birch's avatar
Tom Birch committed
755

756
    with pytest.raises(ValueError):
Tom Birch's avatar
Tom Birch committed
757
        # module and sum of balance have different length (module: 2, sum of balance: 1)
758
        pipe_class(nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1)), [1])
Tom Birch's avatar
Tom Birch committed
759
760
761


@torch_spawn([2])
762
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
763
def lazy_construction(pipe_class):
Tom Birch's avatar
Tom Birch committed
764
765
766
767
768
769
770
771
772
773
774
775
    init_count = 0

    class Custom(nn.Module):
        def __init__(self):
            super(Custom, self).__init__()
            nonlocal init_count
            init_count += 1

        def forward(self, x):
            return x

    model = [
776
777
778
779
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
Tom Birch's avatar
Tom Birch committed
780
781
    ]

782
    pipe = pipe_class(model, balance=[2, 2], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
783
784
785
786
787
788
789
790

    assert isinstance(pipe[0], Custom)
    assert isinstance(pipe[1], Custom)
    assert len(pipe) == 2
    assert init_count == 2


@torch_spawn([2])
791
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" in os.environ, reason="doesn't apply to mpi")
792
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
793
def missing_worker_map(pipe_class):
Tom Birch's avatar
Tom Birch committed
794
795
    model = nn.Sequential(nn.ReLU(), nn.ReLU())

796
    with pytest.raises(ValueError, match="'RpcTransport' requires 'worker_map' to be set"):
797
        pipe_class(model, [1, 1])
Tom Birch's avatar
Tom Birch committed
798
799
800
801


@torch_spawn([2])
@pytest.mark.skip(reason="currently broken")
802
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
803
def verify_module_duplicate_parameters_on_distinct_partitions(pipe_class):
Tom Birch's avatar
Tom Birch committed
804
805
806
807
808
809
810
811
812
813
    class Surrogate(nn.Module):
        def __init__(self, module):
            super().__init__()
            self.module = module

    conv = nn.Conv2d(3, 3, 1)
    model = nn.Sequential(Surrogate(conv), Surrogate(conv))

    # FIXME(tom) can't have duplicate params with separate processes
    with pytest.raises(ValueError, match="module with duplicate parameters on distinct devices is not supported"):
814
        pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
815
816


817
818
819
820
@torch_spawn([4])
def async_event_loop():

    model = nn.Sequential(nn.Linear(10, 10), nn.ReLU(), nn.Linear(10, 10), nn.ReLU())
821
    pipe = AsyncPipe(model, [1, 1, 1, 1], worker_map=get_worker_map(), chunks=10)
822
823
824
825
826
827
828

    inputs = torch.rand(100, 10)

    output = pipe(inputs)
    if pipe.final_stage:
        loss = output.mean()
        loss.backward()