test_pipe.py 24.1 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
from copy import deepcopy
import os
import time

import pytest
import torch
from torch import nn

29
30
31
32
33
from fairscale.nn.model_parallel.initialize import (
    destroy_model_parallel,
    get_pipeline_parallel_group,
    initialize_model_parallel,
)
34
from fairscale.nn.pipe import AsyncPipe, LazyModule, MultiProcessPipe
35
from fairscale.utils.testing import get_worker_map, torch_spawn, torch_version
Tom Birch's avatar
Tom Birch committed
36
37
38


@torch_spawn([2])
39
40
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def parameters(pipe_class):
Tom Birch's avatar
Tom Birch committed
41
    model = nn.Sequential(nn.Linear(1, 1))
42
    pipe = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    if torch.distributed.get_rank() == 0:
        assert list(pipe.parameters()) != []
    else:
        assert list(pipe.parameters()) == []


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
        torch.distributed.broadcast(t, 0)
    else:
        t = torch.empty(100).cuda()
        torch.distributed.broadcast(t, 0)

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband2():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
69
        torch.distributed.send(t, 1, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
70
71
    else:
        t = torch.empty(100).cuda()
72
        torch.distributed.recv(t, 0, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband3():
    t = torch.Tensor(range(100)).cuda()
    torch.distributed.all_reduce(t, op=torch.distributed.ReduceOp.SUM)
    assert torch.equal(t, torch.Tensor(range(0, 200, 2)).cuda())


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
def mpi():
    seed = 1234
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    torch.distributed.barrier()
    tensor_size = (1024, 1024, 10)
    torch.cuda.set_device(torch.distributed.get_rank())  # need to pin device or ucx gets unhappy

    if torch.distributed.get_rank() == 0:
        # t = torch.Tensor(range(10)).cuda(0)
        t = torch.rand(*tensor_size).cuda(0)
        torch.distributed.send(t, 1, tag=1234)
    else:
        t = torch.empty(*tensor_size).cuda(1)
        torch.distributed.recv(t, 0, tag=1234)
        t2 = torch.rand(*tensor_size).cuda(1)

        assert torch.equal(t, t2)


@torch_spawn([1])
110
111
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def public_attrs(pipe_class):
Tom Birch's avatar
Tom Birch committed
112
113
    model = nn.Sequential(nn.Linear(1, 1))

114
    pipe = pipe_class(model, balance=(1,), worker_map=get_worker_map(), chunks=42, checkpoint="always",)
Tom Birch's avatar
Tom Birch committed
115
116
117
118
119
120
121
122
123
124

    assert pipe.balance == [1]
    assert pipe.chunks == 42
    assert isinstance(pipe.chunks, int)
    assert pipe.checkpoint == "always"
    assert isinstance(pipe.checkpoint, str)


@torch_spawn([2])
@pytest.mark.parametrize("balance", [[2], [1, 1]])
125
126
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def sequential_like(balance, pipe_class):
Tom Birch's avatar
Tom Birch committed
127
128
129
130
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
131
    model = pipe_class(model, balance, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    if balance == [2]:
        if torch.distributed.get_rank() == 0:
            assert len(model) == 2
            assert list(model) == [a, b]

            assert model[0] is a
            assert model[1] is b
            with pytest.raises(IndexError):
                _ = model[2]

            assert model[-1] is b
            assert model[-2] is a
        else:
            assert len(model) == 0
            assert list(model) == []
    else:
        assert len(model) == 1
        if torch.distributed.get_rank() == 0:
            assert list(model) == [a]
            assert model[0] is a
            assert model[-1] is a
        else:
            assert list(model) == [b]
            assert model[0] is b
            assert model[-1] is b

        with pytest.raises(IndexError):
            _ = model[1]


@torch_spawn([1])
164
165
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def balance_wrong_length(pipe_class):
Tom Birch's avatar
Tom Birch committed
166
167
168
169
170
171
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
172
        pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
173
174

    with pytest.raises(ValueError):
175
        pipe_class(model, balance=[3], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
176
177
178


@torch_spawn([2])
179
180
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def balance_less_than_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
181
182
183
184
185
186
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
187
        pipe_class(model, balance=[0, 2], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
188
189

    with pytest.raises(ValueError):
190
        pipe_class(model, balance=[-1, 3], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
191
192
193


@torch_spawn([1])
194
195
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def chunks_less_than_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
196
197
198
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError):
199
        pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=0)
Tom Birch's avatar
Tom Birch committed
200
201

    with pytest.raises(ValueError):
202
        pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=-1)
Tom Birch's avatar
Tom Birch committed
203
204
205


@torch_spawn([1])
206
207
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def too_few_devices(pipe_class):
Tom Birch's avatar
Tom Birch committed
208
209
210
211
    model = nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1))

    with pytest.raises(IndexError):
        # len(balance) > len(group.size())
212
        model = pipe_class(model, balance=[1, 1, 1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
213
214
215


@torch_spawn([1])
216
217
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def batch_size_indivisible(pipe_class):
Tom Birch's avatar
Tom Birch committed
218
    model = nn.Sequential(nn.Linear(1, 1))
219
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
220
221
222
223
224
225
226
227
228

    with pytest.warns(None) as record:
        model(torch.rand(7, 1))

    # Indivisible batch size is legal.
    assert not record


@torch_spawn([1])
229
230
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def batch_size_small(pipe_class):
Tom Birch's avatar
Tom Birch committed
231
    model = nn.Sequential(nn.Linear(1, 1))
232
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
233
234
235
236
237
238
239
240
241

    with pytest.warns(None) as record:
        model(torch.rand(2, 1))

    # Batch size smaller than chunks is legal.
    assert not record


@torch_spawn([1])
242
243
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def checkpoint_mode(pipe_class):
Tom Birch's avatar
Tom Birch committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    def count_grad_fn(grad_fn, name, visited=set()):
        if grad_fn in visited:
            return 0
        visited.add(grad_fn)

        if grad_fn is None:
            return 0
        if grad_fn.__class__.__name__ == name:
            return 1

        counter = 0
        for next_grad_fn, _ in grad_fn.next_functions:
            counter += count_grad_fn(next_grad_fn, name, visited=visited)
        return counter

    model = nn.Sequential(nn.Linear(1, 1))
    input = torch.rand(2, 1)

262
263
264
    always = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="always",)
    except_last = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="except_last",)
    never = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="never",)
Tom Birch's avatar
Tom Birch committed
265
266
267
268
269
270
271
272
273
274
275

    always_output = always(input)
    except_last_output = except_last(input)
    never_output = never(input)

    assert count_grad_fn(always_output.grad_fn, "CheckpointBackward") == 2
    assert count_grad_fn(except_last_output.grad_fn, "CheckpointBackward") == 1
    assert count_grad_fn(never_output.grad_fn, "CheckpointBackward") == 0


@torch_spawn([1])
276
277
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def checkpoint_mode_invalid(pipe_class):
Tom Birch's avatar
Tom Birch committed
278
279
280
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError, match="checkpoint is not one of 'always', 'except_last', or 'never'"):
281
282
        pipe_class(
            model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="INVALID_CHECKPOINT",
Tom Birch's avatar
Tom Birch committed
283
284
285
286
        )


@torch_spawn([1])
287
288
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def checkpoint_mode_when_chunks_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
289
290
291
    model = nn.Sequential(nn.Linear(1, 1))

    # All checkpoint modes are fine.
292
293
    pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="except_last",
294
    )
295
296
    pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="always")
    pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="never")
Tom Birch's avatar
Tom Birch committed
297
298
299


@torch_spawn([1])
300
301
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def checkpoint_eval(pipe_class):
Tom Birch's avatar
Tom Birch committed
302
    model = nn.Sequential(nn.Linear(1, 1))
303
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2,)
Tom Birch's avatar
Tom Birch committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    input = torch.rand(2, 1)

    def find_grad_fn(grad_fn, name):
        if grad_fn is None:
            return False
        if grad_fn.__class__.__name__ == name:
            return True
        for next_grad_fn, _ in grad_fn.next_functions:
            if find_grad_fn(next_grad_fn, name):
                return True
        return False

    model.train()
    train_output = model(input)
    assert find_grad_fn(train_output.grad_fn, "CheckpointBackward")
    assert find_grad_fn(train_output.grad_fn, "RecomputeBackward")

    model.eval()
    eval_output = model(input)
    assert not find_grad_fn(eval_output.grad_fn, "CheckpointBackward")
    assert not find_grad_fn(eval_output.grad_fn, "RecomputeBackward")


@torch_spawn([2])
328
@pytest.mark.xfail(torch_version() < (1, 6, 0), reason="Doesn't work on torch < 1.6.0", strict=True)
329
330
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def checkpoint_non_float_input(pipe_class):
Tom Birch's avatar
Tom Birch committed
331
332
333
334
335
336
337
338
339
    class ForkNonFloat(nn.Module):
        def forward(self, input):
            return (input * 2, torch.tensor([False]))

    class JoinNonFloat(nn.Module):
        def forward(self, input):
            return input[0] * 2

    model = nn.Sequential(ForkNonFloat(), JoinNonFloat())
340
    model = pipe_class(model, balance=[1, 1], worker_map=get_worker_map(), chunks=1, checkpoint="always",)
Tom Birch's avatar
Tom Birch committed
341
342
343
344
345
346

    input = torch.rand(1, requires_grad=True)
    output = model(input)
    if model.group.rank() == 1:
        # with torch.autograd.detect_anomaly():
        output.backward()
347
    elif pipe_class == MultiProcessPipe:
Tom Birch's avatar
Tom Birch committed
348
349
        model.back_helper(output)

350
351
    torch.distributed.barrier()

Tom Birch's avatar
Tom Birch committed
352
353

@torch_spawn([1])
354
355
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def no_grad(pipe_class):
Tom Birch's avatar
Tom Birch committed
356
    model = nn.Sequential(nn.Linear(1, 1))
357
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2)
Tom Birch's avatar
Tom Birch committed
358
359
360
361
362
363
364
365
366
367
368
    input = torch.rand(2, 1)

    latent = None

    def hook(module, input, output):
        _ = module
        _ = input

        nonlocal latent
        latent = output

369
370
    partition = model.partition
    partition.register_forward_hook(hook)
Tom Birch's avatar
Tom Birch committed
371
372
373
374
375
376
377
378

    with torch.no_grad():
        model(input)

    assert latent.grad_fn is None


@torch_spawn([1])
379
380
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def exception(pipe_class):
Tom Birch's avatar
Tom Birch committed
381
382
383
384
385
386
387
388
    class ExpectedException(Exception):
        pass

    class Raise(nn.Module):
        def forward(self, *_):
            raise ExpectedException()

    model = nn.Sequential(Raise())
389
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
390
391
392
393
394
395
396

    with pytest.raises(ExpectedException):
        model(torch.rand(1))


# FIXME(tom) should probably signal to all hosts in group to stop
@torch_spawn([4])
397
@pytest.mark.skipif(torch.cuda.is_available() and torch.cuda.device_count() < 4, reason="Not enough GPUs")
Tom Birch's avatar
Tom Birch committed
398
@pytest.mark.xfail(strict=True)
399
400
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def exception_early_stop_asap(pipe_class):
Tom Birch's avatar
Tom Birch committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    """Even the first partitions have finished to process, the partition before
    the failed partition hould be killed as soon as possible.
    """

    class ExpectedExceptio(Exception):
        pass

    class Pass(nn.Module):
        def forward(self, x):
            return x

    counter = 0

    class Counter(nn.Module):
        def forward(self, x):
            time.sleep(0.1)

            nonlocal counter
            counter += 1

            return x

    class Raise(nn.Module):
        def forward(self, x):
            raise ExpectedException()

    model = nn.Sequential(Pass(), Pass(), Counter(), Raise())
428
    model = pipe_class(model, [1, 1, 1, 1], worker_map=get_worker_map(), chunks=3)
Tom Birch's avatar
Tom Birch committed
429
430
431
432
433
434
435
436
437

    with pytest.raises(ExpectedException):
        model(torch.rand(3))

    # If the early stop doesn't work, it would be 3 instead.
    assert counter == 2


@torch_spawn([1])
438
439
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def input_pair(pipe_class):
Tom Birch's avatar
Tom Birch committed
440
441
442
443
444
445
446
447
448
449
450
    class Two(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc_a = nn.Linear(1, 1)
            self.fc_b = nn.Linear(1, 1)

        def forward(self, a_and_b):
            a, b = a_and_b
            return (self.fc_a(a), self.fc_b(b))

    model = nn.Sequential(Two())
451
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2,)
Tom Birch's avatar
Tom Birch committed
452
453
454
455
456
457
458
459
460
461
462
463
464

    a = torch.rand(10, 1, requires_grad=True)
    b = torch.rand(10, 1, requires_grad=True)

    a_out, b_out = model((a, b))
    loss = (a_out + b_out).mean()
    loss.backward()

    assert a.grad is not None
    assert b.grad is not None


@torch_spawn([1])
465
466
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def input_singleton(pipe_class):
Tom Birch's avatar
Tom Birch committed
467
468
469
470
471
472
473
474
475
476
    class One(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc = nn.Linear(1, 1)

        def forward(self, only_a):
            (a,) = only_a
            return (self.fc(a),)

    model = nn.Sequential(One())
477
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2,)
Tom Birch's avatar
Tom Birch committed
478
479
480
481
482
483
484
485
486
487
488
489

    a = torch.rand(10, 1, requires_grad=True)

    (a_out,) = model((a,))
    loss = a_out.mean()
    loss.backward()

    assert all(p.grad is not None for p in model.parameters())
    assert a.grad is not None


@torch_spawn([1])
490
491
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def input_varargs(pipe_class):
Tom Birch's avatar
Tom Birch committed
492
    model = nn.Sequential(nn.Linear(1, 1))
493
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
494
495
496
497
498
499
500
501
502
503

    a = torch.rand(1)
    b = torch.rand(1)

    # TypeError: forward() takes 2 positional arguments but 3 were given
    with pytest.raises(TypeError):
        model(a, b)


@torch_spawn([1])
504
505
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def non_tensor(pipe_class):
Tom Birch's avatar
Tom Birch committed
506
507
508
509
510
    class NonTensor(nn.Module):
        def forward(self, _):
            return "hello"

    model = nn.Sequential(NonTensor())
511
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
512
513
514
515
516
517
518
519
520
521
522
523
    x = torch.rand(1)

    # TypeError: expected Tensor as element 0 in argument 0, but got str
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model("hello")


@torch_spawn([1])
524
525
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def non_tensor_tuple(pipe_class):
Tom Birch's avatar
Tom Birch committed
526
527
528
529
530
    class NonTensorTuple(nn.Module):
        def forward(self, x):
            return (x, "hello")

    model = nn.Sequential(NonTensorTuple())
531
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
    x = torch.rand(1)

    # TypeError: CheckpointBackward.forward: expected Variable (got str) for return value 1
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model((x, "hello"))


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
@pytest.mark.parametrize("lazy", [True, False])
546
547
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def deferred_batch_norm(checkpoint, lazy, pipe_class):
Tom Birch's avatar
Tom Birch committed
548
549
550
551
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
552
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
553
554
    else:
        model = nn.Sequential(pipe_bn)
555
556
    pipe = pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint=checkpoint, deferred_batch_norm=True,
Tom Birch's avatar
Tom Birch committed
557
558
559
560
561
562
563
564
565
566
567
568
569
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert torch.allclose(pipe[0].running_mean, bn.running_mean, atol=1e-4)
    assert torch.allclose(pipe[0].running_var, bn.running_var, atol=1e-4)


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always"])
@pytest.mark.parametrize("lazy", [True, False])
570
571
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def deferred_batch_norm_params(checkpoint, lazy, pipe_class):
Tom Birch's avatar
Tom Birch committed
572
573
574
575
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
576
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
577
578
    else:
        model = nn.Sequential(pipe_bn)
579
580
    pipe = pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint=checkpoint, deferred_batch_norm=True,
Tom Birch's avatar
Tom Birch committed
581
582
583
584
585
586
587
588
589
590
591
592
593
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert pipe[0].weight.grad is not None
    assert pipe[0].bias.grad is not None

    assert torch.allclose(pipe[0].weight.grad, bn.weight.grad, atol=1e-4)
    assert torch.allclose(pipe[0].bias.grad, bn.bias.grad, atol=1e-4)


594
@torch_spawn([4])
595
596
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def devices(pipe_class):
Tom Birch's avatar
Tom Birch committed
597
598
599
600
601
602
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)
    c = nn.Linear(1, 1)

    # There are extra two ranks.
    model = nn.Sequential(a, b, c)
603
    model = pipe_class(model, [1, 1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
604
605

    # Extra devices must be discarded.
606
    if model.group.rank() == 3:
Tom Birch's avatar
Tom Birch committed
607
608
609
610
        assert model.pipeline is None


@torch_spawn([2])
611
612
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def partitions(pipe_class):
Tom Birch's avatar
Tom Birch committed
613
614
615
616
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
617
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
618

619
    assert isinstance(model.partition, nn.Sequential)
Tom Birch's avatar
Tom Birch committed
620

621
    if model.group.rank() == 0:
622
        assert model[0].weight == a.weight
623
    else:
624
        assert model[0].weight == b.weight
Tom Birch's avatar
Tom Birch committed
625
626
627
628


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
629
630
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def deny_moving(pipe_class):
Tom Birch's avatar
Tom Birch committed
631
632
633
634
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
635
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

    model.cuda()
    model.cpu()
    model.to(torch.device("cuda"))
    model.to(0)
    model.to("cuda")
    model.to(device=0)
    model.to(torch.rand(1))
    model.to(tensor=torch.rand(1))

    # Casting is allowed.
    model.half()
    model.to(torch.double)
    model.to(dtype=torch.float)


@torch_spawn([1])
653
654
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def empty_module(pipe_class):
Tom Birch's avatar
Tom Birch committed
655
656
    # Empty sequential module is not illegal.
    model = nn.Sequential()
657
    model = pipe_class(model, [], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
658
659
660
661

    assert model(torch.tensor([42])) == torch.tensor([42])
    assert model((torch.tensor([42]),)) == (torch.tensor([42]),)

662
    # But only tensor or tensors is legal in MultiProcessPipe.
Tom Birch's avatar
Tom Birch committed
663
664
665
666
667
668

    with pytest.raises(TypeError):
        model(42)


@torch_spawn([2])
669
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
670
@pytest.mark.skip(reason="TODO(msb) handle named_children")
671
def named_children(pipe_class):
Tom Birch's avatar
Tom Birch committed
672
673
674
675
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(OrderedDict([("a", a), ("b", b)]))
676
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
677
678

    names = set(n for n, _ in model.named_modules())
679
680
681
682
    if model.group.rank() == 0:
        assert "0.a" in names
    else:
        assert "0.b" in names
Tom Birch's avatar
Tom Birch committed
683

684
    # MultiProcessPipe doesn't support __getattr__. Unlike nn.Sequential, MultiProcessPipe requires
Tom Birch's avatar
Tom Birch committed
685
686
687
688
689
690
    # several methods in its namespace.
    with pytest.raises(AttributeError):
        model.a


@torch_spawn([1])
691
692
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def recommend_auto_balance(pipe_class):
693
    with pytest.raises(ValueError):
Tom Birch's avatar
Tom Birch committed
694
        # module and sum of balance have differen length (module: 0, sum of balance: 1)
695
        pipe_class(nn.Sequential(), [1])
Tom Birch's avatar
Tom Birch committed
696

697
    with pytest.raises(ValueError):
Tom Birch's avatar
Tom Birch committed
698
        # module and sum of balance have different length (module: 2, sum of balance: 1)
699
        pipe_class(nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1)), [1])
Tom Birch's avatar
Tom Birch committed
700
701
702


@torch_spawn([2])
703
704
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def lazy_construction(pipe_class):
Tom Birch's avatar
Tom Birch committed
705
706
707
708
709
710
711
712
713
714
715
716
    init_count = 0

    class Custom(nn.Module):
        def __init__(self):
            super(Custom, self).__init__()
            nonlocal init_count
            init_count += 1

        def forward(self, x):
            return x

    model = [
717
718
719
720
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
Tom Birch's avatar
Tom Birch committed
721
722
    ]

723
    pipe = pipe_class(model, balance=[2, 2], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
724
725
726
727
728
729
730
731

    assert isinstance(pipe[0], Custom)
    assert isinstance(pipe[1], Custom)
    assert len(pipe) == 2
    assert init_count == 2


@torch_spawn([2])
732
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" in os.environ, reason="doesn't apply to mpi")
733
734
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def missing_worker_map(pipe_class):
Tom Birch's avatar
Tom Birch committed
735
736
    model = nn.Sequential(nn.ReLU(), nn.ReLU())

737
    with pytest.raises(ValueError, match="'RpcTransport' requires 'worker_map' to be set"):
738
        pipe_class(model, [1, 1])
Tom Birch's avatar
Tom Birch committed
739
740
741
742


@torch_spawn([2])
@pytest.mark.skip(reason="currently broken")
743
744
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe, AsyncPipe])
def verify_module_duplicate_parameters_on_distinct_partitions(pipe_class):
Tom Birch's avatar
Tom Birch committed
745
746
747
748
749
750
751
752
753
754
    class Surrogate(nn.Module):
        def __init__(self, module):
            super().__init__()
            self.module = module

    conv = nn.Conv2d(3, 3, 1)
    model = nn.Sequential(Surrogate(conv), Surrogate(conv))

    # FIXME(tom) can't have duplicate params with separate processes
    with pytest.raises(ValueError, match="module with duplicate parameters on distinct devices is not supported"):
755
        pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
756
757
758


@torch_spawn([4])
759
@pytest.mark.parametrize("pipe_class", [MultiProcessPipe])
760
def pipelined_backward(pipe_class):
Tom Birch's avatar
Tom Birch committed
761
762
763
764
    model = nn.Sequential(nn.ReLU(), nn.ReLU())

    destroy_model_parallel()
    initialize_model_parallel(1, 4)
765
    pipe = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
766
767
768
769
770

    assert pipe.pipelined_backward is False

    destroy_model_parallel()
    initialize_model_parallel(2, 2)
771
    pipe = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
772
773

    assert pipe.pipelined_backward is True
774
775
776
777
778
779


@torch_spawn([4])
def async_event_loop():

    model = nn.Sequential(nn.Linear(10, 10), nn.ReLU(), nn.Linear(10, 10), nn.ReLU())
780
    pipe = AsyncPipe(model, [1, 1, 1, 1], worker_map=get_worker_map(), chunks=10)
781
782
783
784
785
786
787

    inputs = torch.rand(100, 10)

    output = pipe(inputs)
    if pipe.final_stage:
        loss = output.mean()
        loss.backward()