test_gpipe.py 3.83 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pytest
import torch
from torch import nn

from fairscale.nn.pipe import Pipe
from fairscale.nn.pipe.skip import pop, skippable, stash
from fairscale.nn.pipe.skip.portal import PortalBlue, PortalCopy, PortalOrange
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
27
from fairscale.utils.testing import skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
28
29


Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
30
@skip_if_single_gpu
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
@pytest.mark.parametrize("balance", [[3], [1, 2], [2, 1], [1, 1, 1]], ids=["3", "1:2", "2:1", "1:1:1"])
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
def test_1to3(balance, checkpoint):
    if torch.cuda.device_count() < len(balance):
        pytest.skip("at least %d cuda devices required" % len(balance))

    @skippable(stash=["1to3"])
    class Layer1(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

        def forward(self, input):
            yield stash("1to3", input)
            output = self.conv(input)
            return output

    class Layer2(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

        def forward(self, input):
            output = self.conv(input)
            return output

    @skippable(pop=["1to3"])
    class Layer3(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

        def forward(self, input):
            skip_1to3 = yield pop("1to3")
            output = self.conv(input) + skip_1to3
            return output

    model = nn.Sequential(Layer1(), Layer2(), Layer3())
    model = Pipe(model, balance, chunks=3, checkpoint=checkpoint)

    in_device = model.devices[0]
    out_device = model.devices[-1]

    input = torch.rand(30, 3, 224, 224, device=in_device, requires_grad=True)
    output = model(input)
    loss = output.mean()
    loss.backward()

    assert torch.allclose(output.norm(), torch.tensor(1039.0, device=out_device), atol=2e-1)
    assert torch.allclose(input.grad.norm(), torch.tensor(0.0004533053, device=in_device))


def test_none_skip():
    @skippable(stash=["none"])
    class Stash(nn.Module):
        def forward(self, input):
            yield stash("none", None)
            return input

    @skippable(pop=["none"])
    class Pop(nn.Module):
        def forward(self, input):
            none = yield pop("none")
            assert none is None
            return input

    model = nn.Sequential(Stash(), Pop())
    model = Pipe(model, [1, 1], devices=["cpu", "cpu"], chunks=5)

    input = torch.rand(10, requires_grad=True)
    output = model(input)

    def assert_grad_fn_is_not_portal(grad_fn, visited=set()):
        if grad_fn in visited or grad_fn is None:
            return

        assert not isinstance(grad_fn, PortalBlue._backward_cls)
        assert not isinstance(grad_fn, PortalCopy._backward_cls)
        assert not isinstance(grad_fn, PortalOrange._backward_cls)

        visited.add(grad_fn)
        for next_grad_fn, _ in grad_fn.next_functions:
            assert_grad_fn_is_not_portal(next_grad_fn, visited)

    assert_grad_fn_is_not_portal(output.grad_fn)

    output.sum().backward()
    assert input.grad.mean().item() == 1