test_gpipe.py 3.83 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import pytest
import torch
from torch import nn

from fairscale.nn.pipe import Pipe
from fairscale.nn.pipe.skip import pop, skippable, stash
from fairscale.nn.pipe.skip.portal import PortalBlue, PortalCopy, PortalOrange


@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
@pytest.mark.parametrize("balance", [[3], [1, 2], [2, 1], [1, 1, 1]], ids=["3", "1:2", "2:1", "1:1:1"])
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
def test_1to3(balance, checkpoint):
    if torch.cuda.device_count() < len(balance):
        pytest.skip("at least %d cuda devices required" % len(balance))

    @skippable(stash=["1to3"])
    class Layer1(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

        def forward(self, input):
            yield stash("1to3", input)
            output = self.conv(input)
            return output

    class Layer2(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

        def forward(self, input):
            output = self.conv(input)
            return output

    @skippable(pop=["1to3"])
    class Layer3(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

        def forward(self, input):
            skip_1to3 = yield pop("1to3")
            output = self.conv(input) + skip_1to3
            return output

    model = nn.Sequential(Layer1(), Layer2(), Layer3())
    model = Pipe(model, balance, chunks=3, checkpoint=checkpoint)

    in_device = model.devices[0]
    out_device = model.devices[-1]

    input = torch.rand(30, 3, 224, 224, device=in_device, requires_grad=True)
    output = model(input)
    loss = output.mean()
    loss.backward()

    assert torch.allclose(output.norm(), torch.tensor(1039.0, device=out_device), atol=2e-1)
    assert torch.allclose(input.grad.norm(), torch.tensor(0.0004533053, device=in_device))


def test_none_skip():
    @skippable(stash=["none"])
    class Stash(nn.Module):
        def forward(self, input):
            yield stash("none", None)
            return input

    @skippable(pop=["none"])
    class Pop(nn.Module):
        def forward(self, input):
            none = yield pop("none")
            assert none is None
            return input

    model = nn.Sequential(Stash(), Pop())
    model = Pipe(model, [1, 1], devices=["cpu", "cpu"], chunks=5)

    input = torch.rand(10, requires_grad=True)
    output = model(input)

    def assert_grad_fn_is_not_portal(grad_fn, visited=set()):
        if grad_fn in visited or grad_fn is None:
            return

        assert not isinstance(grad_fn, PortalBlue._backward_cls)
        assert not isinstance(grad_fn, PortalCopy._backward_cls)
        assert not isinstance(grad_fn, PortalOrange._backward_cls)

        visited.add(grad_fn)
        for next_grad_fn, _ in grad_fn.next_functions:
            assert_grad_fn_is_not_portal(next_grad_fn, visited)

    assert_grad_fn_is_not_portal(output.grad_fn)

    output.sum().backward()
    assert input.grad.mean().item() == 1