test_oss.py 7.69 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
10
11
12
13
14
15
16
17
18
19
20
import os

import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

import fairscale.optim as optim

skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")

21
22
23
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
24
25
26
27

def setup_module(module):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29500"
28
    dist.init_process_group(backend=BACKEND, rank=0, world_size=1)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
29
30
31
32
33


def dist_init(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29501"
34
    dist.init_process_group(backend=BACKEND, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
35
36
37
38
39
40
41
42


def test_create():
    params = [torch.rand(1)]
    o = optim.OSS(params, lr=0.01)


def test_state_dict():
43
    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
44
    o = optim.OSS([x], lr=0.1)
45
    o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
46
    state_dict = o.state_dict()
47
48
49
50
51
52
53
54

    # Check that the pulled state is what we expect
    assert state_dict["param_groups"][0]["lr"] == 0.1

    # Check that the pulled state and the .param_groups attribute are in sync
    assert state_dict["param_groups"][0]["lr"] == o.param_groups[0]["lr"]

    # Check that it's correctly loaded
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
55
56
    o = optim.OSS([x], lr=0.01)
    o.load_state_dict(state_dict)
57
58
59
60

    # We should now be using a lr of 0.1, both within the optimizer
    # and as exposed by the .param_groups attribute
    assert o.param_groups[0]["lr"] == 0.1
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
61
62
    x.backward()
    o.step()
63
64
65
66
67
68
69
70
71
72
73
74
75
    assert x == torch.tensor([0.9], device=DEVICE)


def test_local_state_dict():
    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
    o = optim.OSS([x], lr=0.1)
    local_state_dict = o.local_state_dict()
    o = optim.OSS([x], lr=0.01)
    o.load_local_state_dict(local_state_dict)
    # We should now be using a lr of 0.1.
    x.backward()
    o.step()
    assert x == torch.tensor([0.9], device=DEVICE)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89


def run_test_add_param_group(rank, world_size):
    dist_init(rank, world_size)
    params = []
    for size in [4, 5, 2, 6, 4]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert len(o.param_groups) == 1
    o.add_param_group({"params": [torch.rand(3, 1)]})
    assert len(o.param_groups) == 2
    # Verify that added group is added to the correct partition making all have 8 elements.
    assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == 8
    if rank == 1:
90
        assert len(o.optim.param_groups) == 2
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
91
    else:
92
        assert len(o.optim.param_groups) == 1
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138


def test_add_param_group():
    world_size = 3
    mp.spawn(run_test_add_param_group, args=(world_size,), nprocs=world_size, join=True)


def run_test_zero_grad(rank, world_size):
    dist_init(rank, world_size)
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad


def test_zero_grad():
    world_size = 2
    mp.spawn(run_test_zero_grad, args=(world_size,), nprocs=world_size, join=True)


def run_test_step(rank, world_size):
    dist_init(rank, world_size)
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)


@skip_if_no_cuda
def test_step():
139
    world_size = min(2, torch.cuda.device_count())
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
140
141
142
    mp.spawn(run_test_step, args=(world_size,), nprocs=world_size, join=True)


143
def run_test_step_with_closure(rank, world_size, optimizer=None):
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
144
    dist_init(rank, world_size)
145

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
146
147
148
149
150
151
152
153
154
155
156
157
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
158

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
159
    o = optim.OSS(m.parameters(), lr=0.1)
160

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)


@skip_if_no_cuda
def test_step_with_closure():
183
    world_size = min(2, torch.cuda.device_count())
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    mp.spawn(run_test_step_with_closure, args=(world_size,), nprocs=world_size, join=True)


def run_test_sharding(rank, world_size):
    dist_init(rank, world_size)
    params = []
    for size in [5, 4, 2, 6, 4, 3]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == 8


def test_sharding():
    world_size = 3
    mp.spawn(run_test_sharding, args=(world_size,), nprocs=world_size, join=True)
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235


def run_test_collect_shards(rank, world_size, reference_rank):
    dist_init(rank, world_size)
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
236
        assert len(optimizer_state_dict["state"]) == world_size
237
238
239
240
241
242
243
244
245
246
247
248
249
    else:
        optimizer_state_dict = {}

    optimizer_state_dict = optim.utils.broadcast_object(
        optimizer_state_dict, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
    )

    # Load the optimizer state dict
    optimizer.load_state_dict(optimizer_state_dict)


def test_collect_shards():
    world_size = 3
250
251
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
252
253
254
255
256
    reference_rank = 0

    mp.spawn(
        run_test_collect_shards, args=(world_size, reference_rank), nprocs=world_size, join=True,
    )