test_oss.py 15.3 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

10
11
12

import tempfile
import unittest
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
13

14
import numpy as np
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
15
16
17
18
19
20
21
22
23
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

import fairscale.optim as optim

skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")

24
25
26
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
27

28
29
30
def dist_init(rank, world_size, tempfile_name, backend=BACKEND):
    url = "file://" + tempfile_name
    dist.init_process_group(init_method=url, backend=backend, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
31
32


33
34
35
36
class TestSingleRank(unittest.TestCase):
    """
    All the following tests do not check for inter-process communication
    """
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
37

38
39
    def setUp(self):
        dist_init(0, 1, tempfile.mkstemp()[1])
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
40

41
42
    def tearDown(self):
        torch.distributed.destroy_process_group()
43

44
45
46
    def test_create(self):
        params = [torch.rand(1)]
        o = optim.OSS(params, lr=0.01)
47

48
49
50
    def test_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1, momentum=0.9)
51
        x.backward()
52
53
54
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
55
        o.zero_grad()
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
        state_dict = o.state_dict()

        # Check that the state dict is pytorch-compliant key wise
        assert "param_groups" in state_dict.keys()
        assert "state" in state_dict.keys()

        # Check that the pulled state is what we expect, and that we have all the expected keys
        assert state_dict["param_groups"][0]["lr"] == 0.1
        assert state_dict["param_groups"][0]["momentum"] == 0.9
        assert not state_dict["param_groups"][0]["nesterov"]
        assert state_dict["param_groups"][0]["weight_decay"] == 0.0
        assert state_dict["param_groups"][0]["dampening"] == 0.0

        # Check that the pulled state and the .param_groups attribute are in sync
        for k in state_dict["param_groups"][0].keys():
            if k != "params":
                assert state_dict["param_groups"][0][k] == o.param_groups[0][k]

        # Check that it's correctly loaded
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(state_dict)
        # Check that state is correct and on proper device
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)

        # We should now be using a lr of 0.1, both within the optimizer
        # and as exposed by the .param_groups attribute
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
85
        o.step()
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        assert x == torch.tensor([0.71], device=DEVICE)
        assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)

        # Check that the exposed param_groups are on the proper device
        assert o.param_groups[0]["params"][0].device == x.device

    def test_lr_scheduler(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.01)
        o2 = torch.optim.SGD([x2], lr=0.01)
        s = torch.optim.lr_scheduler.StepLR(o, 1)
        s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
        for _ in range(5):
            x.backward()
            o.zero_grad()
            o.step()
            s.step()
            x2.backward()
            o2.zero_grad()
            o2.step()
            s2.step()
            assert x == x2

    def test_step_with_kwargs(self):
        class SGDWithStepKWArg(torch.optim.SGD):
            def step(self, closure=None, kwarg=[]):
                super().step()
                kwarg.append(5)

        kwarg = []
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
        x.backward()
        o.step(0, kwarg=kwarg)
        assert kwarg == [5]
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_step_with_extra_inner_key(self):
        class SGDWithNewKey(torch.optim.SGD):
            # Dummy optimizer which adds a new key to the param groups
            def step(self, closure=None):
                super().step()
                self.param_groups[0]["new_key"] = 0.1

        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithNewKey, lr=0.1)
        x.backward()
        o.step()
        assert o.param_groups[0]["new_key"] == 0.1
        assert x == torch.tensor([0.9], device=DEVICE)
137

138
139
140
141
    def test_step_without_closure(self):
        class SGDWithoutClosure(torch.optim.SGD):
            def step(self):
                return super().step()
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], SGDWithoutClosure, lr=0.1)
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
        local_state_dict = o.local_state_dict()
        o = optim.OSS([x], lr=0.01)
        o.load_local_state_dict(local_state_dict)
        # We should now be using a lr of 0.1.
        assert o.optim.param_groups[0]["lr"] == 0.1
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)

    def test_implicit_local_state_dict(self):
        x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
        o = optim.OSS([x], lr=0.1)
        local_state_dict = o.state_dict()
        o = optim.OSS([x], lr=0.01)
        o.load_state_dict(local_state_dict)
        # We should now be using a lr of 0.1.
        assert o.optim.param_groups[0]["lr"] == 0.1
        assert o.param_groups[0]["lr"] == 0.1
        x.backward()
        o.step()
        assert x == torch.tensor([0.9], device=DEVICE)
174
175


176
177
def run_test_add_param_group(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
178
179
180
181
182
183
184
185
186
    params = []
    for size in [4, 5, 2, 6, 4]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert len(o.param_groups) == 1
    o.add_param_group({"params": [torch.rand(3, 1)]})
    assert len(o.param_groups) == 2
    # Verify that added group is added to the correct partition making all have 8 elements.
    assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == 8
187
    assert len(o.optim.param_groups) == 2
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
188

189
190
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
191
192
193

def test_add_param_group():
    world_size = 3
194
195
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_add_param_group, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
196
197


198
199
def run_test_zero_grad(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
200
201
202
203
204
205
206
207
208
209
210
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad

211
212
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
213
214
215

def test_zero_grad():
    world_size = 2
216
217
    temp_file_name = tempfile.mkstemp()[1]
    mp.spawn(run_test_zero_grad, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
218
219


220
221
def run_test_step(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name, backend="gloo")
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)

237
238
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
239
240
241

@skip_if_no_cuda
def test_step():
242
    world_size = min(2, torch.cuda.device_count())
243
244
245
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
246
247


248
249
def run_test_step_with_closure(rank, world_size, tempfile_name, optimizer=None):
    dist_init(rank, world_size, tempfile_name)
250

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
251
252
253
254
255
256
257
258
259
260
261
262
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
263

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
264
    o = optim.OSS(m.parameters(), lr=0.1)
265

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)

285
286
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
287
288
289

@skip_if_no_cuda
def test_step_with_closure():
290
    world_size = min(2, torch.cuda.device_count())
291
292
293
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_step_with_closure, args=(world_size, temp_file_name), nprocs=world_size, join=True)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
294
295


296
297
def run_test_sharding(rank, world_size, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
298
299
300
301
302
303
    params = []
    for size in [5, 4, 2, 6, 4, 3]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == 8

304
305
    dist.destroy_process_group()

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
306
307
308

def test_sharding():
    world_size = 3
309
310
311
    temp_file_name = tempfile.mkstemp()[1]

    mp.spawn(run_test_sharding, args=(world_size, temp_file_name), nprocs=world_size, join=True)
312
313


314
315
def run_test_collect_shards(rank, world_size, reference_rank, tempfile_name):
    dist_init(rank, world_size, tempfile_name)
316
317
318
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
319
    batch, input_width, hidden, target_width = 3, 3, 3, 5
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
349
        assert len(optimizer_state_dict["state"]) == world_size
350
351
352
353
354
355
356
357
358
    else:
        optimizer_state_dict = {}

    optimizer_state_dict = optim.utils.broadcast_object(
        optimizer_state_dict, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
    )

    # Load the optimizer state dict
    optimizer.load_state_dict(optimizer_state_dict)
359
    dist.destroy_process_group()
360
361
362
363


def test_collect_shards():
    world_size = 3
364
365
    temp_file_name = tempfile.mkstemp()[1]

366
367
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
368
369
370
    reference_rank = 0

    mp.spawn(
371
        run_test_collect_shards, args=(world_size, reference_rank, temp_file_name), nprocs=world_size, join=True,
372
    )
373
374


375
def run_test_multiple_groups(rank, world_size, tempfile_name):
376
    # Only work with the even ranks, to check that the global_rank indexing is properly used
377
    dist_init(rank=rank, world_size=world_size, tempfile_name=tempfile_name, backend="gloo")
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    sub_group_ranks = [0, 2, 4]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cpu"
    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss /= world_size
                loss.backward()
                dist.all_reduce(loss, group=process_group)  # Not strictly needed for the test below

                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
            for pg in optimizer.param_groups:
                for p in pg["params"]:
                    receptacle = [p.clone() for _ in sub_group_ranks] if rank == 0 else []
                    dist.gather(p, receptacle, dst=0, group=process_group)
                    if rank == 0:
                        for sync_p in receptacle[1:]:
                            assert torch.all(torch.eq(receptacle[0], sync_p)), "Models differ in between ranks"

    if rank in sub_group_ranks:
        # Model fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(
            model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=2 ** 20
        )
        check(optimizer)

        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=0)
        check(optimizer)

439
440
441
    dist.destroy_process_group(process_group)
    dist.destroy_process_group()

442
443
444

def test_multiple_groups():
    world_size = 6
445
    temp_file_name = tempfile.mkstemp()[1]
446
447

    mp.spawn(
448
        run_test_multiple_groups, args=(world_size, temp_file_name), nprocs=world_size, join=True,
449
    )