mnist_test_pipe.py 4.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# adapted from https://github.com/pytorch/examples/blob/master/mnist/main.py
from __future__ import print_function

import argparse
import time

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torchvision import datasets, transforms

from fairscale.nn import Pipe

net = nn.Sequential(
    nn.Conv2d(1, 32, 3, 1),
    nn.ReLU(),
    nn.Conv2d(32, 64, 3, 1),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=2),
    nn.Dropout2d(0.25),
    nn.Flatten(1),
    nn.Linear(9216, 128),
    nn.ReLU(),
    nn.Dropout2d(0.5),
    nn.Linear(128, 10),
    nn.LogSoftmax(dim=1),
)


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output.to(device), target.to(device))
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print(
                "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
                    epoch,
                    batch_idx * len(data),
                    len(train_loader.dataset),
                    100.0 * batch_idx / len(train_loader),
                    loss.item(),
                )
            )
            if args.dry_run:
                break


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output.to(device), target.to(device), reduction="sum").item()  # sum up batch loss
            pred = output.argmax(dim=1, keepdim=True).to(device)  # get the index of the max log-probability
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print(
        "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
            test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset)
        )
    )


def main():
    # Training settings
    parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
    parser.add_argument(
        "--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)"
    )
    parser.add_argument(
        "--test-batch-size", type=int, default=1000, metavar="N", help="input batch size for testing (default: 1000)"
    )
    parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)")
    parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
    parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)")
    parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
    parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
    parser.add_argument(
        "--log-interval",
        type=int,
        default=10,
        metavar="N",
        help="how many batches to wait before logging training status",
    )
    parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
    args = parser.parse_args()

    torch.manual_seed(args.seed)

    kwargs = {"batch_size": args.batch_size}
    kwargs.update({"num_workers": 1, "pin_memory": True, "shuffle": True},)

    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform)
    dataset2 = datasets.MNIST("../data", train=False, transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1, **kwargs)
    test_loader = torch.utils.data.DataLoader(dataset2, **kwargs)

    model = net
    model = Pipe(model, balance=[6, 6], devices=[0, 1], chunks=2)
    device = model.devices[0]

    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    for epoch in range(1, args.epochs + 1):
        tic = time.perf_counter()
        train(args, model, device, train_loader, optimizer, epoch)
        toc = time.perf_counter()
        print(f">>> TRANING Time {toc - tic:0.4f} seconds")

        tic = time.perf_counter()
        test(model, device, test_loader)
        toc = time.perf_counter()
        print(f">>> TESTING Time {toc - tic:0.4f} seconds")
        scheduler.step()

    if args.save_model:
        torch.save(model.state_dict(), "mnist_cnn.pt")


if __name__ == "__main__":
    main()