# adapted from https://github.com/pytorch/examples/blob/master/mnist/main.py from __future__ import print_function import argparse import time import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.lr_scheduler import StepLR from torchvision import datasets, transforms from fairscale.nn import Pipe net = nn.Sequential( nn.Conv2d(1, 32, 3, 1), nn.ReLU(), nn.Conv2d(32, 64, 3, 1), nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Dropout2d(0.25), nn.Flatten(1), nn.Linear(9216, 128), nn.ReLU(), nn.Dropout2d(0.5), nn.Linear(128, 10), nn.LogSoftmax(dim=1), ) def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output.to(device), target.to(device)) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch, batch_idx * len(data), len(train_loader.dataset), 100.0 * batch_idx / len(train_loader), loss.item(), ) ) if args.dry_run: break def test(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output.to(device), target.to(device), reduction="sum").item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True).to(device) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print( "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format( test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset) ) ) def main(): # Training settings parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument( "--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)" ) parser.add_argument( "--test-batch-size", type=int, default=1000, metavar="N", help="input batch size for testing (default: 1000)" ) parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)") parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)") parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)") parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass") parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)") parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model") args = parser.parse_args() torch.manual_seed(args.seed) kwargs = {"batch_size": args.batch_size} kwargs.update({"num_workers": 1, "pin_memory": True, "shuffle": True},) transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) dataset1 = datasets.MNIST("../data", train=True, download=True, transform=transform) dataset2 = datasets.MNIST("../data", train=False, transform=transform) train_loader = torch.utils.data.DataLoader(dataset1, **kwargs) test_loader = torch.utils.data.DataLoader(dataset2, **kwargs) model = net model = Pipe(model, balance=[6, 6], devices=[0, 1], chunks=2) device = model.devices[0] optimizer = optim.Adadelta(model.parameters(), lr=args.lr) scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) for epoch in range(1, args.epochs + 1): tic = time.perf_counter() train(args, model, device, train_loader, optimizer, epoch) toc = time.perf_counter() print(f">>> TRANING Time {toc - tic:0.4f} seconds") tic = time.perf_counter() test(model, device, test_loader) toc = time.perf_counter() print(f">>> TESTING Time {toc - tic:0.4f} seconds") scheduler.step() if args.save_model: torch.save(model.state_dict(), "mnist_cnn.pt") if __name__ == "__main__": main()