test_pipe.py 22.9 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import OrderedDict
from copy import deepcopy
import os
import time

import pytest
import torch
from torch import nn

29
30
31
from fairscale.nn.model_parallel.initialize import get_pipeline_parallel_group
from fairscale.nn.pipe import AsyncPipe
from fairscale.nn.pipe.types import LazyModule
32
from fairscale.utils.testing import get_worker_map, torch_spawn, torch_version
Tom Birch's avatar
Tom Birch committed
33
34
35


@torch_spawn([2])
36
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
37
def parameters(pipe_class):
Tom Birch's avatar
Tom Birch committed
38
    model = nn.Sequential(nn.Linear(1, 1))
39
    pipe = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    if torch.distributed.get_rank() == 0:
        assert list(pipe.parameters()) != []
    else:
        assert list(pipe.parameters()) == []


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
        torch.distributed.broadcast(t, 0)
    else:
        t = torch.empty(100).cuda()
        torch.distributed.broadcast(t, 0)

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband2():
    if torch.distributed.get_rank() == 0:
        t = torch.Tensor(range(100)).cuda()
66
        torch.distributed.send(t, 1, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
67
68
    else:
        t = torch.empty(100).cuda()
69
        torch.distributed.recv(t, 0, group=get_pipeline_parallel_group())
Tom Birch's avatar
Tom Birch committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    assert torch.equal(t, torch.Tensor(range(100)).cuda())
    print(f"t on {torch.distributed.get_rank()} is {t}")


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def infiniband3():
    t = torch.Tensor(range(100)).cuda()
    torch.distributed.all_reduce(t, op=torch.distributed.ReduceOp.SUM)
    assert torch.equal(t, torch.Tensor(range(0, 200, 2)).cuda())


@torch_spawn([2])
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="mpi required")
def mpi():
    seed = 1234
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)

    torch.distributed.barrier()
    tensor_size = (1024, 1024, 10)
    torch.cuda.set_device(torch.distributed.get_rank())  # need to pin device or ucx gets unhappy

    if torch.distributed.get_rank() == 0:
        # t = torch.Tensor(range(10)).cuda(0)
        t = torch.rand(*tensor_size).cuda(0)
        torch.distributed.send(t, 1, tag=1234)
    else:
        t = torch.empty(*tensor_size).cuda(1)
        torch.distributed.recv(t, 0, tag=1234)
        t2 = torch.rand(*tensor_size).cuda(1)

        assert torch.equal(t, t2)


@torch_spawn([1])
107
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
108
def public_attrs(pipe_class):
Tom Birch's avatar
Tom Birch committed
109
110
    model = nn.Sequential(nn.Linear(1, 1))

111
    pipe = pipe_class(model, balance=(1,), worker_map=get_worker_map(), chunks=42, checkpoint="always",)
Tom Birch's avatar
Tom Birch committed
112
113
114
115
116
117
118
119
120
121

    assert pipe.balance == [1]
    assert pipe.chunks == 42
    assert isinstance(pipe.chunks, int)
    assert pipe.checkpoint == "always"
    assert isinstance(pipe.checkpoint, str)


@torch_spawn([2])
@pytest.mark.parametrize("balance", [[2], [1, 1]])
122
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
123
def sequential_like(balance, pipe_class):
Tom Birch's avatar
Tom Birch committed
124
125
126
127
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
128
    model = pipe_class(model, balance, worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

    if balance == [2]:
        if torch.distributed.get_rank() == 0:
            assert len(model) == 2
            assert list(model) == [a, b]

            assert model[0] is a
            assert model[1] is b
            with pytest.raises(IndexError):
                _ = model[2]

            assert model[-1] is b
            assert model[-2] is a
        else:
            assert len(model) == 0
            assert list(model) == []
    else:
        assert len(model) == 1
        if torch.distributed.get_rank() == 0:
            assert list(model) == [a]
            assert model[0] is a
            assert model[-1] is a
        else:
            assert list(model) == [b]
            assert model[0] is b
            assert model[-1] is b

        with pytest.raises(IndexError):
            _ = model[1]


@torch_spawn([1])
161
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
162
def balance_wrong_length(pipe_class):
Tom Birch's avatar
Tom Birch committed
163
164
165
166
167
168
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
169
        pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
170
171

    with pytest.raises(ValueError):
172
        pipe_class(model, balance=[3], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
173
174
175


@torch_spawn([2])
176
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
177
def balance_less_than_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
178
179
180
181
182
183
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)

    with pytest.raises(ValueError):
184
        pipe_class(model, balance=[0, 2], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
185
186

    with pytest.raises(ValueError):
187
        pipe_class(model, balance=[-1, 3], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
188
189
190


@torch_spawn([1])
191
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
192
def chunks_less_than_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
193
194
195
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError):
196
        pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=0)
Tom Birch's avatar
Tom Birch committed
197
198

    with pytest.raises(ValueError):
199
        pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=-1)
Tom Birch's avatar
Tom Birch committed
200
201
202


@torch_spawn([1])
203
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
204
def too_few_devices(pipe_class):
Tom Birch's avatar
Tom Birch committed
205
206
207
208
    model = nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1), nn.Linear(1, 1))

    with pytest.raises(IndexError):
        # len(balance) > len(group.size())
209
        model = pipe_class(model, balance=[1, 1, 1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
210
211
212


@torch_spawn([1])
213
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
214
def batch_size_indivisible(pipe_class):
Tom Birch's avatar
Tom Birch committed
215
    model = nn.Sequential(nn.Linear(1, 1))
216
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
217
218
219
220
221
222
223
224
225

    with pytest.warns(None) as record:
        model(torch.rand(7, 1))

    # Indivisible batch size is legal.
    assert not record


@torch_spawn([1])
226
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
227
def batch_size_small(pipe_class):
Tom Birch's avatar
Tom Birch committed
228
    model = nn.Sequential(nn.Linear(1, 1))
229
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=4)
Tom Birch's avatar
Tom Birch committed
230
231
232
233
234
235
236
237
238

    with pytest.warns(None) as record:
        model(torch.rand(2, 1))

    # Batch size smaller than chunks is legal.
    assert not record


@torch_spawn([1])
239
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
240
def checkpoint_mode(pipe_class):
Tom Birch's avatar
Tom Birch committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    def count_grad_fn(grad_fn, name, visited=set()):
        if grad_fn in visited:
            return 0
        visited.add(grad_fn)

        if grad_fn is None:
            return 0
        if grad_fn.__class__.__name__ == name:
            return 1

        counter = 0
        for next_grad_fn, _ in grad_fn.next_functions:
            counter += count_grad_fn(next_grad_fn, name, visited=visited)
        return counter

    model = nn.Sequential(nn.Linear(1, 1))
    input = torch.rand(2, 1)

259
260
261
    always = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="always",)
    except_last = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="except_last",)
    never = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="never",)
Tom Birch's avatar
Tom Birch committed
262
263
264
265
266
267
268
269
270
271
272

    always_output = always(input)
    except_last_output = except_last(input)
    never_output = never(input)

    assert count_grad_fn(always_output.grad_fn, "CheckpointBackward") == 2
    assert count_grad_fn(except_last_output.grad_fn, "CheckpointBackward") == 1
    assert count_grad_fn(never_output.grad_fn, "CheckpointBackward") == 0


@torch_spawn([1])
273
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
274
def checkpoint_mode_invalid(pipe_class):
Tom Birch's avatar
Tom Birch committed
275
276
277
    model = nn.Sequential(nn.Linear(1, 1))

    with pytest.raises(ValueError, match="checkpoint is not one of 'always', 'except_last', or 'never'"):
278
279
        pipe_class(
            model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint="INVALID_CHECKPOINT",
Tom Birch's avatar
Tom Birch committed
280
281
282
283
        )


@torch_spawn([1])
284
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
285
def checkpoint_mode_when_chunks_1(pipe_class):
Tom Birch's avatar
Tom Birch committed
286
287
288
    model = nn.Sequential(nn.Linear(1, 1))

    # All checkpoint modes are fine.
289
290
    pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="except_last",
291
    )
292
293
    pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="always")
    pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint="never")
Tom Birch's avatar
Tom Birch committed
294
295
296


@torch_spawn([1])
297
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
298
def checkpoint_eval(pipe_class):
Tom Birch's avatar
Tom Birch committed
299
    model = nn.Sequential(nn.Linear(1, 1))
300
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2,)
Tom Birch's avatar
Tom Birch committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    input = torch.rand(2, 1)

    def find_grad_fn(grad_fn, name):
        if grad_fn is None:
            return False
        if grad_fn.__class__.__name__ == name:
            return True
        for next_grad_fn, _ in grad_fn.next_functions:
            if find_grad_fn(next_grad_fn, name):
                return True
        return False

    model.train()
    train_output = model(input)
    assert find_grad_fn(train_output.grad_fn, "CheckpointBackward")
    assert find_grad_fn(train_output.grad_fn, "RecomputeBackward")

    model.eval()
    eval_output = model(input)
    assert not find_grad_fn(eval_output.grad_fn, "CheckpointBackward")
    assert not find_grad_fn(eval_output.grad_fn, "RecomputeBackward")


@torch_spawn([2])
325
@pytest.mark.xfail(torch_version() < (1, 6, 0), reason="Doesn't work on torch < 1.6.0", strict=True)
326
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
327
def checkpoint_non_float_input(pipe_class):
Tom Birch's avatar
Tom Birch committed
328
329
330
331
332
333
334
335
336
    class ForkNonFloat(nn.Module):
        def forward(self, input):
            return (input * 2, torch.tensor([False]))

    class JoinNonFloat(nn.Module):
        def forward(self, input):
            return input[0] * 2

    model = nn.Sequential(ForkNonFloat(), JoinNonFloat())
337
    model = pipe_class(model, balance=[1, 1], worker_map=get_worker_map(), chunks=1, checkpoint="always",)
Tom Birch's avatar
Tom Birch committed
338
339
340
341
342
343
344

    input = torch.rand(1, requires_grad=True)
    output = model(input)
    if model.group.rank() == 1:
        # with torch.autograd.detect_anomaly():
        output.backward()

345
346
    torch.distributed.barrier()

Tom Birch's avatar
Tom Birch committed
347
348

@torch_spawn([1])
349
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
350
def no_grad(pipe_class):
Tom Birch's avatar
Tom Birch committed
351
    model = nn.Sequential(nn.Linear(1, 1))
352
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2)
Tom Birch's avatar
Tom Birch committed
353
354
355
356
357
358
359
360
361
362
363
    input = torch.rand(2, 1)

    latent = None

    def hook(module, input, output):
        _ = module
        _ = input

        nonlocal latent
        latent = output

364
365
    partition = model.partition
    partition.register_forward_hook(hook)
Tom Birch's avatar
Tom Birch committed
366
367
368
369
370
371
372
373

    with torch.no_grad():
        model(input)

    assert latent.grad_fn is None


@torch_spawn([1])
374
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
375
def exception(pipe_class):
Tom Birch's avatar
Tom Birch committed
376
377
378
379
380
381
382
383
    class ExpectedException(Exception):
        pass

    class Raise(nn.Module):
        def forward(self, *_):
            raise ExpectedException()

    model = nn.Sequential(Raise())
384
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=1)
Tom Birch's avatar
Tom Birch committed
385
386
387
388
389
390
391

    with pytest.raises(ExpectedException):
        model(torch.rand(1))


# FIXME(tom) should probably signal to all hosts in group to stop
@torch_spawn([4])
392
@pytest.mark.skipif(torch.cuda.is_available() and torch.cuda.device_count() < 4, reason="Not enough GPUs")
Tom Birch's avatar
Tom Birch committed
393
@pytest.mark.xfail(strict=True)
394
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
395
def exception_early_stop_asap(pipe_class):
Tom Birch's avatar
Tom Birch committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    """Even the first partitions have finished to process, the partition before
    the failed partition hould be killed as soon as possible.
    """

    class ExpectedExceptio(Exception):
        pass

    class Pass(nn.Module):
        def forward(self, x):
            return x

    counter = 0

    class Counter(nn.Module):
        def forward(self, x):
            time.sleep(0.1)

            nonlocal counter
            counter += 1

            return x

    class Raise(nn.Module):
        def forward(self, x):
            raise ExpectedException()

    model = nn.Sequential(Pass(), Pass(), Counter(), Raise())
423
    model = pipe_class(model, [1, 1, 1, 1], worker_map=get_worker_map(), chunks=3)
Tom Birch's avatar
Tom Birch committed
424
425
426
427
428
429
430
431
432

    with pytest.raises(ExpectedException):
        model(torch.rand(3))

    # If the early stop doesn't work, it would be 3 instead.
    assert counter == 2


@torch_spawn([1])
433
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
434
def input_pair(pipe_class):
Tom Birch's avatar
Tom Birch committed
435
436
437
438
439
440
441
442
443
444
445
    class Two(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc_a = nn.Linear(1, 1)
            self.fc_b = nn.Linear(1, 1)

        def forward(self, a_and_b):
            a, b = a_and_b
            return (self.fc_a(a), self.fc_b(b))

    model = nn.Sequential(Two())
446
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2,)
Tom Birch's avatar
Tom Birch committed
447
448
449
450
451
452
453
454
455
456
457
458
459

    a = torch.rand(10, 1, requires_grad=True)
    b = torch.rand(10, 1, requires_grad=True)

    a_out, b_out = model((a, b))
    loss = (a_out + b_out).mean()
    loss.backward()

    assert a.grad is not None
    assert b.grad is not None


@torch_spawn([1])
460
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
461
def input_singleton(pipe_class):
Tom Birch's avatar
Tom Birch committed
462
463
464
465
466
467
468
469
470
471
    class One(nn.Module):
        def __init__(self):
            super().__init__()
            self.fc = nn.Linear(1, 1)

        def forward(self, only_a):
            (a,) = only_a
            return (self.fc(a),)

    model = nn.Sequential(One())
472
    model = pipe_class(model, balance=[1], worker_map=get_worker_map(), chunks=2,)
Tom Birch's avatar
Tom Birch committed
473
474
475
476
477
478
479
480
481
482
483
484

    a = torch.rand(10, 1, requires_grad=True)

    (a_out,) = model((a,))
    loss = a_out.mean()
    loss.backward()

    assert all(p.grad is not None for p in model.parameters())
    assert a.grad is not None


@torch_spawn([1])
485
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
486
def input_varargs(pipe_class):
Tom Birch's avatar
Tom Birch committed
487
    model = nn.Sequential(nn.Linear(1, 1))
488
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
489
490
491
492
493
494
495
496
497
498

    a = torch.rand(1)
    b = torch.rand(1)

    # TypeError: forward() takes 2 positional arguments but 3 were given
    with pytest.raises(TypeError):
        model(a, b)


@torch_spawn([1])
499
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
500
def non_tensor(pipe_class):
Tom Birch's avatar
Tom Birch committed
501
502
503
504
505
    class NonTensor(nn.Module):
        def forward(self, _):
            return "hello"

    model = nn.Sequential(NonTensor())
506
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
507
508
509
510
511
512
513
514
515
516
517
518
    x = torch.rand(1)

    # TypeError: expected Tensor as element 0 in argument 0, but got str
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model("hello")


@torch_spawn([1])
519
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
520
def non_tensor_tuple(pipe_class):
Tom Birch's avatar
Tom Birch committed
521
522
523
524
525
    class NonTensorTuple(nn.Module):
        def forward(self, x):
            return (x, "hello")

    model = nn.Sequential(NonTensorTuple())
526
    model = pipe_class(model, balance=[1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
    x = torch.rand(1)

    # TypeError: CheckpointBackward.forward: expected Variable (got str) for return value 1
    with pytest.raises(TypeError):
        model(x)

    # TypeError: expected Tensor to scatter, but got str
    with pytest.raises(TypeError):
        model((x, "hello"))


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
@pytest.mark.parametrize("lazy", [True, False])
541
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
542
def deferred_batch_norm(checkpoint, lazy, pipe_class):
Tom Birch's avatar
Tom Birch committed
543
544
545
546
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
547
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
548
549
    else:
        model = nn.Sequential(pipe_bn)
550
551
    pipe = pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=2, checkpoint=checkpoint, deferred_batch_norm=True,
Tom Birch's avatar
Tom Birch committed
552
553
554
555
556
557
558
559
560
561
562
563
564
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert torch.allclose(pipe[0].running_mean, bn.running_mean, atol=1e-4)
    assert torch.allclose(pipe[0].running_var, bn.running_var, atol=1e-4)


@torch_spawn([1])
@pytest.mark.parametrize("checkpoint", ["never", "always"])
@pytest.mark.parametrize("lazy", [True, False])
565
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
566
def deferred_batch_norm_params(checkpoint, lazy, pipe_class):
Tom Birch's avatar
Tom Birch committed
567
568
569
570
    bn = nn.BatchNorm2d(3)
    pipe_bn = deepcopy(bn)
    pipe_fn = lambda: pipe_bn  # noqa: E731
    if lazy:
571
        model = [LazyModule(pipe_fn)]
Tom Birch's avatar
Tom Birch committed
572
573
    else:
        model = nn.Sequential(pipe_bn)
574
575
    pipe = pipe_class(
        model, balance=[1], worker_map=get_worker_map(), chunks=1, checkpoint=checkpoint, deferred_batch_norm=True,
Tom Birch's avatar
Tom Birch committed
576
577
578
579
580
581
582
583
584
585
586
587
588
    )

    x = torch.rand(4, 3, 10, 10)
    pipe(x).mean().backward()
    bn(x).mean().backward()

    assert pipe[0].weight.grad is not None
    assert pipe[0].bias.grad is not None

    assert torch.allclose(pipe[0].weight.grad, bn.weight.grad, atol=1e-4)
    assert torch.allclose(pipe[0].bias.grad, bn.bias.grad, atol=1e-4)


589
@torch_spawn([4])
590
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
591
def devices(pipe_class):
Tom Birch's avatar
Tom Birch committed
592
593
594
595
596
597
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)
    c = nn.Linear(1, 1)

    # There are extra two ranks.
    model = nn.Sequential(a, b, c)
598
    model = pipe_class(model, [1, 1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
599
600

    # Extra devices must be discarded.
601
    if model.group.rank() == 3:
Tom Birch's avatar
Tom Birch committed
602
603
604
605
        assert model.pipeline is None


@torch_spawn([2])
606
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
607
def partitions(pipe_class):
Tom Birch's avatar
Tom Birch committed
608
609
610
611
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
612
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
613

614
    assert isinstance(model.partition, nn.Sequential)
Tom Birch's avatar
Tom Birch committed
615

616
    if model.group.rank() == 0:
617
        assert model[0].weight == a.weight
618
    else:
619
        assert model[0].weight == b.weight
Tom Birch's avatar
Tom Birch committed
620
621
622
623


@torch_spawn([2])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
624
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
625
def deny_moving(pipe_class):
Tom Birch's avatar
Tom Birch committed
626
627
628
629
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(a, b)
630
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

    model.cuda()
    model.cpu()
    model.to(torch.device("cuda"))
    model.to(0)
    model.to("cuda")
    model.to(device=0)
    model.to(torch.rand(1))
    model.to(tensor=torch.rand(1))

    # Casting is allowed.
    model.half()
    model.to(torch.double)
    model.to(dtype=torch.float)


@torch_spawn([1])
648
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
649
def empty_module(pipe_class):
Tom Birch's avatar
Tom Birch committed
650
651
    # Empty sequential module is not illegal.
    model = nn.Sequential()
652
    model = pipe_class(model, [], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
653
654
655
656

    assert model(torch.tensor([42])) == torch.tensor([42])
    assert model((torch.tensor([42]),)) == (torch.tensor([42]),)

657
    # But only tensor or tensors is legal in MultiProcessPipe.
Tom Birch's avatar
Tom Birch committed
658
659
660
661
662
663

    with pytest.raises(TypeError):
        model(42)


@torch_spawn([2])
664
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
665
@pytest.mark.skip(reason="TODO(msb) handle named_children")
666
def named_children(pipe_class):
Tom Birch's avatar
Tom Birch committed
667
668
669
670
    a = nn.Linear(1, 1)
    b = nn.Linear(1, 1)

    model = nn.Sequential(OrderedDict([("a", a), ("b", b)]))
671
    model = pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
672
673

    names = set(n for n, _ in model.named_modules())
674
675
676
677
    if model.group.rank() == 0:
        assert "0.a" in names
    else:
        assert "0.b" in names
Tom Birch's avatar
Tom Birch committed
678

679
    # MultiProcessPipe doesn't support __getattr__. Unlike nn.Sequential, MultiProcessPipe requires
Tom Birch's avatar
Tom Birch committed
680
681
682
683
684
685
    # several methods in its namespace.
    with pytest.raises(AttributeError):
        model.a


@torch_spawn([1])
686
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
687
def recommend_auto_balance(pipe_class):
688
    with pytest.raises(ValueError):
Tom Birch's avatar
Tom Birch committed
689
        # module and sum of balance have differen length (module: 0, sum of balance: 1)
690
        pipe_class(nn.Sequential(), [1])
Tom Birch's avatar
Tom Birch committed
691

692
    with pytest.raises(ValueError):
Tom Birch's avatar
Tom Birch committed
693
        # module and sum of balance have different length (module: 2, sum of balance: 1)
694
        pipe_class(nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 1)), [1])
Tom Birch's avatar
Tom Birch committed
695
696
697


@torch_spawn([2])
698
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
699
def lazy_construction(pipe_class):
Tom Birch's avatar
Tom Birch committed
700
701
702
703
704
705
706
707
708
709
710
711
    init_count = 0

    class Custom(nn.Module):
        def __init__(self):
            super(Custom, self).__init__()
            nonlocal init_count
            init_count += 1

        def forward(self, x):
            return x

    model = [
712
713
714
715
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
        LazyModule(lambda: Custom()),
Tom Birch's avatar
Tom Birch committed
716
717
    ]

718
    pipe = pipe_class(model, balance=[2, 2], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
719
720
721
722
723
724
725
726

    assert isinstance(pipe[0], Custom)
    assert isinstance(pipe[1], Custom)
    assert len(pipe) == 2
    assert init_count == 2


@torch_spawn([2])
727
@pytest.mark.skipif("OMPI_COMM_WORLD_RANK" in os.environ, reason="doesn't apply to mpi")
728
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
729
def missing_worker_map(pipe_class):
Tom Birch's avatar
Tom Birch committed
730
731
    model = nn.Sequential(nn.ReLU(), nn.ReLU())

732
    with pytest.raises(ValueError, match="'RpcTransport' requires 'worker_map' to be set"):
733
        pipe_class(model, [1, 1])
Tom Birch's avatar
Tom Birch committed
734
735
736
737


@torch_spawn([2])
@pytest.mark.skip(reason="currently broken")
738
@pytest.mark.parametrize("pipe_class", [AsyncPipe])
739
def verify_module_duplicate_parameters_on_distinct_partitions(pipe_class):
Tom Birch's avatar
Tom Birch committed
740
741
742
743
744
745
746
747
748
749
    class Surrogate(nn.Module):
        def __init__(self, module):
            super().__init__()
            self.module = module

    conv = nn.Conv2d(3, 3, 1)
    model = nn.Sequential(Surrogate(conv), Surrogate(conv))

    # FIXME(tom) can't have duplicate params with separate processes
    with pytest.raises(ValueError, match="module with duplicate parameters on distinct devices is not supported"):
750
        pipe_class(model, [1, 1], worker_map=get_worker_map())
Tom Birch's avatar
Tom Birch committed
751
752


753
754
755
756
@torch_spawn([4])
def async_event_loop():

    model = nn.Sequential(nn.Linear(10, 10), nn.ReLU(), nn.Linear(10, 10), nn.ReLU())
757
    pipe = AsyncPipe(model, [1, 1, 1, 1], worker_map=get_worker_map(), chunks=10)
758
759
760
761
762
763
764

    inputs = torch.rand(100, 10)

    output = pipe(inputs)
    if pipe.final_stage:
        loss = output.mean()
        loss.backward()