test_multiprocess_pipe.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
Testing MultiProcessPipe Module
"""

import functools
import tempfile
12
from typing import Any, Dict, List, NamedTuple, Tuple
13
14
15
16

import pytest
import torch
import torch.distributed.autograd as dist_autograd
17
from torch.distributed.nn import RemoteModule
18
19
20
21
22
from torch.distributed.optim import DistributedOptimizer
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
import torch.nn as nn

23
from fairscale.experimental.nn.distributed_pipeline import DistributedLoss, DistributedPipeline, PipelineModulesGraph
24
25
26
27
28
29
30
31
32
from fairscale.utils.testing import torch_version

CPU_DEVICES = ["worker0/cpu", "worker1/cpu"]
GPU_DEVICES = ["worker0/cuda:0", "worker1/cuda:1"]
if torch.cuda.is_available():
    DEVICES = [CPU_DEVICES, GPU_DEVICES]
else:
    DEVICES = [CPU_DEVICES]

33

34
pytestmark = pytest.mark.skipif(torch_version() < (1, 10, 0), reason="requires torch version >= 1.10.0")
35
36
37


def rpc_worker(rank, world_size, init_file, func, *args):
38
39
40
    options = rpc.TensorPipeRpcBackendOptions(init_method="file://" + init_file)
    for i in range(world_size):
        options.set_device_map("worker" + str(i), {rank: i})
41
42
43
44
45
46
47
    rpc.init_rpc(
        "worker" + str(rank),
        rank=rank,
        world_size=world_size,
        backend=rpc.BackendType.TENSORPIPE,
        rpc_backend_options=options,
    )
48
49
50
51
52
    if rank == 0:
        func(*args)
    rpc.shutdown()


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
class RemoteModuleParams(NamedTuple):
    module_cls: nn.Module
    args: Tuple
    kwargs: Dict[str, Any]


def create_sequence_pipeline(
    layers: List[RemoteModuleParams], balance: List[int], devices: List[str], **kwargs: Any
) -> DistributedPipeline:
    """A simple helper function to create a pipeline from list of pipeline-modules that run sequentially.
       Args:
           layers: list of modules. They should not be already assigned a remote-device.
           balance: a list of integers how layers should be paritioned. Sum of numbers in 'balance'
               should be equal to the number of layers.
           devices: specification of remote device for each partition. Should be of the same length
               as 'balance'.
    """
    remote_modules: List[RemoteModule] = []
    index = 0
    for num_layers, remote_device in zip(balance, devices):
        next_index = index + num_layers
        for li in range(index, next_index):
            remote_modules.append(RemoteModule(remote_device, **layers[li]._asdict()))
        index = next_index

    graph = PipelineModulesGraph()
79
    graph.add_sequence(remote_modules, [0])
80
81
82
83

    return DistributedPipeline(graph, **kwargs)


84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def rpc_test(world_size=1):
    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            mp.spawn(rpc_worker, args=(world_size, tempfile.mkstemp()[1], func, *kwargs.values()), nprocs=world_size)

        globals()["test_" + func.__name__] = wrapper
        return func

    return decorator


@rpc_test()
@pytest.mark.parametrize("devices", DEVICES)
def create(devices):
99
100
    model = [RemoteModuleParams(nn.Linear, (4, 4), {})]
    pipe = create_sequence_pipeline(model, balance=[1], chunks=1, devices=devices[:1])
101
102
103
104


@rpc_test()
def create_multiple_layers():
105
106
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=1, devices=["worker0/cpu", "worker0/cpu"])
107
108
109
110
111


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def create_multiple_workers(devices):
112
113
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=1, devices=devices[:2])
114
115
116
117
118


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def parameter_rrefs(devices):
119
120
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=1, devices=devices[:2])
121
122
123
124
125
126
127
128
    parameter_rrefs = pipe.parameter_rrefs()
    assert len(parameter_rrefs) == 2


@rpc_test(world_size=1)
@pytest.mark.parametrize("devices", DEVICES)
def forward(devices):
    yh = torch.tensor([1.0, 0.0])
129
130
131
    x = torch.tensor([1.0, -1.0])
    model = [RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1], chunks=1, devices=devices[:1])
132
133
134
135
136
137
138
139
    y = pipe(x).to_here().cpu()
    assert torch.equal(y, yh), f"{y} != {yh}"


@rpc_test(world_size=1)
@pytest.mark.parametrize("devices", DEVICES)
def forward_chunks(devices):
    yh = torch.tensor([1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 4.0, 0.0])
140
141
142
    x = torch.tensor([1.0, -1.0, 2.0, -2.0, 3.0, -3.0, 4.0, -4.0])
    model = [RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1], chunks=4, devices=devices[:1])
143
144
145
146
147
148
    y = pipe(x).to_here().cpu()
    assert torch.equal(y, yh), f"{y} != {yh}"


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
149
150
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
def forward_multi(devices, checkpoint):
151
    device = devices[0].split("/")[1]
152
153
    torch.random.manual_seed(3)
    torch.cuda.manual_seed_all(3)
154
    x = torch.randn(8, 4).to(device)
155
    x.requires_grad = True  # TODO(msb) remove this limitation
156
157
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=4, devices=devices[:2], checkpoint=checkpoint)
158
    y = pipe(x).to_here()
159
160
161
162
163
164
165
166
167
    expected_sum = torch.tensor(5.0615)
    assert y.shape == torch.Size([8, 4])
    assert y.requires_grad is True
    assert torch.allclose(y.sum(), expected_sum), f"{y.sum()} != {expected_sum}"


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def backward(devices):
168
    device = devices[0].split("/")[1]
169
170
    torch.random.manual_seed(3)
    criterion = DistributedLoss(torch.nn.MSELoss)
171
    x = torch.randn(8, 4).to(device)
172
173
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=4, devices=devices[:2])
174
175
176
177
178
179
180
181
182
183
184
    with dist_autograd.context() as context_id:
        y = pipe(x)
        loss = criterion(y, rpc.RRef(x))
        loss.backward(context_id)
        grads = dist_autograd.get_gradients(context_id)
    assert len(grads) == 2


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def update(devices):
185
    device = devices[0].split("/")[1]
186
187
    torch.random.manual_seed(3)
    criterion = DistributedLoss(torch.nn.MSELoss)
188
    x = torch.randn(8, 4).to(device)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=4, devices=devices[:2])
    opt = DistributedOptimizer(torch.optim.SGD, pipe.parameter_rrefs(), lr=0.05,)
    losses = []
    for i in range(2):
        with dist_autograd.context() as context_id:
            y = pipe(x)
            loss = criterion(y, rpc.RRef(x))
            losses.append(loss)
            loss.backward(context_id)
            opt.step(context_id)
    losses = [l.to_here() for l in losses]
    assert losses[0] > losses[1], f"{losses[0]} !> {losses[1]}"


class ConcatenateTensors(nn.Module):
    def forward(self, *inputs):
        return torch.cat(inputs, dim=1)


class SplitTensors(nn.Module):
    def forward(self, input):
        return torch.split(input, (input.shape[1] + 1) // 2, dim=1)


def extract_partitions(graph: PipelineModulesGraph, pipeline: DistributedPipeline) -> List[List[int]]:
    return [list(map(graph.nodes.index, p.nodes)) for p in pipeline.partitions]


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def multi_input_multi_output_layers(devices):
    device = devices[0].split("/")[1]
    torch.random.manual_seed(3)
    criterion = DistributedLoss(torch.nn.MSELoss)
    x = torch.randn(8, 4).to(device)

    #                                / ->linear_layer_2_1
    # input -> linear_layer1 -> split                     ->concatenate
    #                                \ ->linear_layer_2_2

    linear_layer_1 = RemoteModule(devices[0], nn.Linear, (4, 4), {})
    split = RemoteModule(devices[0], SplitTensors, (), {})
    linear_layers_2 = [
        RemoteModule(devices[0], nn.Linear, (2, 2), {}),
        RemoteModule(devices[1], nn.Linear, (2, 2), {}),
    ]
    concatenate = RemoteModule(devices[1], ConcatenateTensors, ())

    graph = PipelineModulesGraph()
239
240
241
242
    graph.add_sequence([linear_layer_1, split], [0], 2)
    for i, l in enumerate(linear_layers_2):
        graph.add_layer(l, [(split, i)])
    graph.add_layer(concatenate, linear_layers_2)
243
244
245

    pipe = DistributedPipeline(graph, chunks=4)
    assert [[0, 1], [2], [3], [4]] == extract_partitions(graph, pipe)
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    opt = DistributedOptimizer(torch.optim.SGD, pipe.parameter_rrefs(), lr=0.05,)
    losses = []
    for i in range(2):
        with dist_autograd.context() as context_id:
            y = pipe(x)
            loss = criterion(y, rpc.RRef(x))
            losses.append(loss)
            loss.backward(context_id)
            opt.step(context_id)
    losses = [l.to_here() for l in losses]
    assert losses[0] > losses[1], f"{losses[0]} !> {losses[1]}"


# A test for extracting the same graph as in test multi_input_multi_output_layers automatically
class ShardedLinearLayer(nn.Module):
    def __init__(self, input_device, shard_devices, output_device):
        super().__init__()
        self.split = RemoteModule(input_device, SplitTensors, (), {})
        self.linear_layers_2 = nn.ModuleList(
            [
                RemoteModule(shard_devices[0], nn.Linear, (2, 2), {}),
                RemoteModule(shard_devices[1], nn.Linear, (2, 2), {}),
            ]
        )
        self.concatenate = RemoteModule(output_device, ConcatenateTensors, ())

    def forward(self, input):
        shards = self.split(input)
        shards = [self.linear_layers_2[i](shards[i]) for i in range(2)]
        return self.concatenate(*shards)


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def auto_graph_extract(devices):
    from fairscale.experimental.nn.distributed_pipeline.trace import make_graph

    device = devices[0].split("/")[1]
    torch.random.manual_seed(3)
    criterion = DistributedLoss(torch.nn.MSELoss)
    x = torch.randn(8, 4).to(device)

    # create model
    model = nn.Sequential(
        RemoteModule(devices[0], nn.Linear, (4, 4), {}), ShardedLinearLayer(devices[0], devices, devices[1])
    )
    graph = make_graph(model)
    pipe = DistributedPipeline(graph, chunks=4)
    partitions = extract_partitions(graph, pipe)
    assert [[0, 1], [2], [3], [4]] == partitions, f"partitions={partitions}"
296
297
298
299
300
301
302
303
304
305
306
    opt = DistributedOptimizer(torch.optim.SGD, pipe.parameter_rrefs(), lr=0.05,)
    losses = []
    for i in range(2):
        with dist_autograd.context() as context_id:
            y = pipe(x)
            loss = criterion(y, rpc.RRef(x))
            losses.append(loss)
            loss.backward(context_id)
            opt.step(context_id)
    losses = [l.to_here() for l in losses]
    assert losses[0] > losses[1], f"{losses[0]} !> {losses[1]}"