test_multiprocess_pipe.py 9.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

"""
Testing MultiProcessPipe Module
"""

import functools
import tempfile
12
from typing import Any, Dict, List, NamedTuple, Tuple
13
14
15
16

import pytest
import torch
import torch.distributed.autograd as dist_autograd
17
from torch.distributed.nn import RemoteModule
18
19
20
21
22
from torch.distributed.optim import DistributedOptimizer
import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
import torch.nn as nn

23
from fairscale.experimental.nn.distributed_pipeline import DistributedLoss, DistributedPipeline, PipelineModulesGraph
24
25
26
27
28
29
30
31
32
from fairscale.utils.testing import torch_version

CPU_DEVICES = ["worker0/cpu", "worker1/cpu"]
GPU_DEVICES = ["worker0/cuda:0", "worker1/cuda:1"]
if torch.cuda.is_available():
    DEVICES = [CPU_DEVICES, GPU_DEVICES]
else:
    DEVICES = [CPU_DEVICES]

33

34
pytestmark = pytest.mark.skipif(torch_version() < (1, 9, 0), reason="requires torch version >= 1.9.0")
35
36
37


def rpc_worker(rank, world_size, init_file, func, *args):
38
39
40
    options = rpc.TensorPipeRpcBackendOptions(init_method="file://" + init_file)
    for i in range(world_size):
        options.set_device_map("worker" + str(i), {rank: i})
41
42
43
44
45
46
47
    rpc.init_rpc(
        "worker" + str(rank),
        rank=rank,
        world_size=world_size,
        backend=rpc.BackendType.TENSORPIPE,
        rpc_backend_options=options,
    )
48
49
50
51
52
    if rank == 0:
        func(*args)
    rpc.shutdown()


53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
class RemoteModuleParams(NamedTuple):
    module_cls: nn.Module
    args: Tuple
    kwargs: Dict[str, Any]


def create_sequence_pipeline(
    layers: List[RemoteModuleParams], balance: List[int], devices: List[str], **kwargs: Any
) -> DistributedPipeline:
    """A simple helper function to create a pipeline from list of pipeline-modules that run sequentially.
       Args:
           layers: list of modules. They should not be already assigned a remote-device.
           balance: a list of integers how layers should be paritioned. Sum of numbers in 'balance'
               should be equal to the number of layers.
           devices: specification of remote device for each partition. Should be of the same length
               as 'balance'.
    """
    remote_modules: List[RemoteModule] = []
    index = 0
    for num_layers, remote_device in zip(balance, devices):
        next_index = index + num_layers
        for li in range(index, next_index):
            remote_modules.append(RemoteModule(remote_device, **layers[li]._asdict()))
        index = next_index

    graph = PipelineModulesGraph()
    graph.add_sequence(remote_modules)
    graph.set_model_input(remote_modules[0])

    return DistributedPipeline(graph, **kwargs)


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def rpc_test(world_size=1):
    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            mp.spawn(rpc_worker, args=(world_size, tempfile.mkstemp()[1], func, *kwargs.values()), nprocs=world_size)

        globals()["test_" + func.__name__] = wrapper
        return func

    return decorator


@rpc_test()
@pytest.mark.parametrize("devices", DEVICES)
def create(devices):
100
101
    model = [RemoteModuleParams(nn.Linear, (4, 4), {})]
    pipe = create_sequence_pipeline(model, balance=[1], chunks=1, devices=devices[:1])
102
103
104
105


@rpc_test()
def create_multiple_layers():
106
107
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=1, devices=["worker0/cpu", "worker0/cpu"])
108
109
110
111
112


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def create_multiple_workers(devices):
113
114
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=1, devices=devices[:2])
115
116
117
118
119


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def parameter_rrefs(devices):
120
121
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=1, devices=devices[:2])
122
123
124
125
126
127
128
129
    parameter_rrefs = pipe.parameter_rrefs()
    assert len(parameter_rrefs) == 2


@rpc_test(world_size=1)
@pytest.mark.parametrize("devices", DEVICES)
def forward(devices):
    yh = torch.tensor([1.0, 0.0])
130
131
132
    x = torch.tensor([1.0, -1.0])
    model = [RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1], chunks=1, devices=devices[:1])
133
134
135
136
137
138
139
140
    y = pipe(x).to_here().cpu()
    assert torch.equal(y, yh), f"{y} != {yh}"


@rpc_test(world_size=1)
@pytest.mark.parametrize("devices", DEVICES)
def forward_chunks(devices):
    yh = torch.tensor([1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 4.0, 0.0])
141
142
143
    x = torch.tensor([1.0, -1.0, 2.0, -2.0, 3.0, -3.0, 4.0, -4.0])
    model = [RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1], chunks=4, devices=devices[:1])
144
145
146
147
148
149
    y = pipe(x).to_here().cpu()
    assert torch.equal(y, yh), f"{y} != {yh}"


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
150
151
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
def forward_multi(devices, checkpoint):
152
    device = devices[0].split("/")[1]
153
154
    torch.random.manual_seed(3)
    torch.cuda.manual_seed_all(3)
155
    x = torch.randn(8, 4).to(device)
156
    x.requires_grad = True  # TODO(msb) remove this limitation
157
158
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=4, devices=devices[:2], checkpoint=checkpoint)
159
    y = pipe(x).to_here()
160
161
162
163
164
165
166
167
168
    expected_sum = torch.tensor(5.0615)
    assert y.shape == torch.Size([8, 4])
    assert y.requires_grad is True
    assert torch.allclose(y.sum(), expected_sum), f"{y.sum()} != {expected_sum}"


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def backward(devices):
169
    device = devices[0].split("/")[1]
170
171
    torch.random.manual_seed(3)
    criterion = DistributedLoss(torch.nn.MSELoss)
172
    x = torch.randn(8, 4).to(device)
173
174
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=4, devices=devices[:2])
175
176
177
178
179
180
181
182
183
184
185
    with dist_autograd.context() as context_id:
        y = pipe(x)
        loss = criterion(y, rpc.RRef(x))
        loss.backward(context_id)
        grads = dist_autograd.get_gradients(context_id)
    assert len(grads) == 2


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def update(devices):
186
    device = devices[0].split("/")[1]
187
188
    torch.random.manual_seed(3)
    criterion = DistributedLoss(torch.nn.MSELoss)
189
    x = torch.randn(8, 4).to(device)
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    model = [RemoteModuleParams(nn.Linear, (4, 4), {}), RemoteModuleParams(nn.ReLU, (), {})]
    pipe = create_sequence_pipeline(model, balance=[1, 1], chunks=4, devices=devices[:2])
    params = pipe.parameter_rrefs()
    opt = DistributedOptimizer(torch.optim.SGD, pipe.parameter_rrefs(), lr=0.05,)
    losses = []
    for i in range(2):
        with dist_autograd.context() as context_id:
            y = pipe(x)
            loss = criterion(y, rpc.RRef(x))
            losses.append(loss)
            loss.backward(context_id)
            opt.step(context_id)
    losses = [l.to_here() for l in losses]
    assert losses[0] > losses[1], f"{losses[0]} !> {losses[1]}"


class ConcatenateTensors(nn.Module):
    def forward(self, *inputs):
        return torch.cat(inputs, dim=1)


class SplitTensors(nn.Module):
    def forward(self, input):
        return torch.split(input, (input.shape[1] + 1) // 2, dim=1)


def extract_partitions(graph: PipelineModulesGraph, pipeline: DistributedPipeline) -> List[List[int]]:
    return [list(map(graph.nodes.index, p.nodes)) for p in pipeline.partitions]


@rpc_test(world_size=2)
@pytest.mark.parametrize("devices", DEVICES)
def multi_input_multi_output_layers(devices):
    device = devices[0].split("/")[1]
    torch.random.manual_seed(3)
    criterion = DistributedLoss(torch.nn.MSELoss)
    x = torch.randn(8, 4).to(device)

    #                                / ->linear_layer_2_1
    # input -> linear_layer1 -> split                     ->concatenate
    #                                \ ->linear_layer_2_2

    linear_layer_1 = RemoteModule(devices[0], nn.Linear, (4, 4), {})
    split = RemoteModule(devices[0], SplitTensors, (), {})
    linear_layers_2 = [
        RemoteModule(devices[0], nn.Linear, (2, 2), {}),
        RemoteModule(devices[1], nn.Linear, (2, 2), {}),
    ]
    concatenate = RemoteModule(devices[1], ConcatenateTensors, ())

    graph = PipelineModulesGraph()
    graph.add_sequence([linear_layer_1, split])
    graph.set_model_input(linear_layer_1)
    graph.fan_out(split, linear_layers_2)
    graph.add_multi_input_layer(concatenate, linear_layers_2)

    pipe = DistributedPipeline(graph, chunks=4)
    assert [[0, 1], [2], [3], [4]] == extract_partitions(graph, pipe)
248
249
250
251
252
253
254
255
256
257
258
259
    params = pipe.parameter_rrefs()
    opt = DistributedOptimizer(torch.optim.SGD, pipe.parameter_rrefs(), lr=0.05,)
    losses = []
    for i in range(2):
        with dist_autograd.context() as context_id:
            y = pipe(x)
            loss = criterion(y, rpc.RRef(x))
            losses.append(loss)
            loss.backward(context_id)
            opt.step(context_id)
    losses = [l.to_here() for l in losses]
    assert losses[0] > losses[1], f"{losses[0]} !> {losses[1]}"