fully_sharded_data_parallel.py 104 KB
Newer Older
1
2
3
4
5
6
7
8
9
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

import contextlib
import copy
from enum import Enum, auto
import functools
10
import logging
11
from math import inf
12
import time
Min Xu's avatar
Min Xu committed
13
import traceback
14
import typing
15
16
17
18
19
20
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Generator,
21
    Iterator,
22
23
24
25
26
27
28
29
30
    List,
    Mapping,
    NamedTuple,
    Optional,
    Set,
    Tuple,
    Union,
    cast,
)
31
32
33
34
35
36
37

import torch
from torch.autograd import Variable
import torch.distributed as dist
from torch.distributed import ProcessGroup
import torch.nn as nn
import torch.nn.functional as F
38
from torch.nn.parameter import Parameter
39
40

from fairscale.nn.misc import FlattenParamsWrapper
41
from fairscale.nn.wrap import auto_wrap, config_auto_wrap_policy, enable_wrap
42
from fairscale.utils.containers import apply_to_tensors
43
44
45
46
47
48
from fairscale.utils.parallel import (
    chunk_and_pad,
    enable_pytorch_sync_bn,
    get_process_group_cached,
    validate_process_group,
)
49
from fairscale.utils.params import calc_grad_norm, recursive_copy_to_device
50
from fairscale.utils.reduce_scatter_bucketer import ReduceScatterBucketer
51
from fairscale.utils.state_dict import replace_by_prefix_
52

53
54
from . import fsdp_optim_utils as ou

55
56
57
58
59
60
61
62
63
if TYPE_CHECKING:
    from collections import OrderedDict  # noqa: F401


class TrainingState(Enum):
    """
    Simple enum to indicate what state FSDP is in. Used for asserting
    to make sure APIs are called in the correct state.

64
65
66
67
68
69
70
    ..note::

        BACKWARD_PRE and BACKWARD_POST states are used to ensure we
        receives backward hooks in the correct order. It is used to catch
        unexpected order of hooks being called (likely due to our
        hook registration logic or autograd engine logic changes).

71
72
73
74
75
76
77
78
79
80
81
    TODO (Min): It would be nice to capture the stepping state as well.
        Maybe we can use the model.zero_grad() call, but not sure if it
        is called if optim.zero_grad() is used instead.
        It would be nice to have clear state transition be explicit like:

        zero_grad -> fwd -> bwd -> optionally accum grad by repeating
        fwd/bwd -> stepping -> loop back to zero_grad
    """

    IDLE = auto()
    FORWARD = auto()
82
83
    BACKWARD_PRE = auto()
    BACKWARD_POST = auto()
84
    SUMMON_FULL_PARAMS = auto()
85
86
87
88
89
90


class FullyShardedDataParallel(nn.Module):
    """
    A wrapper for sharding Module parameters across data parallel workers. This
    is inspired by `Xu et al.`_ as well as the ZeRO Stage 3 from DeepSpeed_.
91
    FullyShardedDataParallel is commonly shorten to FSDP.
92
93
94
95

    .. _`Xu et al.`: https://arxiv.org/abs/2004.13336
    .. _DeepSpeed: https://www.deepspeed.ai/

Min Xu's avatar
Min Xu committed
96
    Pseudo-code usage::
97

98
        import torch
99
        from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP
Min Xu's avatar
Min Xu committed
100

Myle Ott's avatar
Myle Ott committed
101
        torch.cuda.set_device(device_id)
102
        sharded_module = FSDP(my_module)
103
104
105
106
107
108
109
110
        optim = torch.optim.Adam(sharded_module.parameters(), lr=0.0001)
        x = sharded_module(x, y=3, z=torch.Tensor([1]))
        loss = x.sum()
        loss.backward()
        optim.step()

    It is also possible to shard individual layers separately and have an outer
    wrapper handle any leftover parameters. This can be helpful to further
Myle Ott's avatar
Myle Ott committed
111
112
113
    reduce GPU memory usage, reduce system memory usage when initializing large
    models and to improve training speed by overlapping the all-gather step
    across the forward pass. For example::
114

115
        import torch
Min Xu's avatar
Min Xu committed
116
        from fairscale.nn.wrap import wrap, enable_wrap, auto_wrap
Sam Shleifer's avatar
Sam Shleifer committed
117
        from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP
Min Xu's avatar
Min Xu committed
118
119
120
121
        from fairscale.utils.testing import dist_init, teardown, rmf

        result = dist_init(0, 1, "/tmp/t1", "/tmp/t2")
        assert result
122
123
        fsdp_params = dict(wrapper_cls=FSDP, mixed_precision=True, flatten_parameters=True)
        with enable_wrap(**fsdp_params):
Min Xu's avatar
Min Xu committed
124
125
            l1 = wrap(torch.nn.Linear(5, 5))
            assert isinstance(l1, FSDP)
Sam Shleifer's avatar
Sam Shleifer committed
126
127
            # Wraps layer in FSDP by default if within context
            # Separately Wraps children modules with more than 1e8 params
Min Xu's avatar
Min Xu committed
128
129
130
131
132
133
134
135
136
            large_tfmr = torch.nn.Transformer(d_model=2048, num_encoder_layers=12,
                                              num_decoder_layers=12)
            l2 = auto_wrap(large_tfmr)
            assert isinstance(l2.encoder, FSDP)
            assert isinstance(l2.decoder, FSDP)
            print(l2)  # You can print the model to examine FSDP wrapping.
        teardown()
        rmf("/tmp/t1")
        rmf("/tmp/t2")
137

Myle Ott's avatar
Myle Ott committed
138
139
140
141
142
143
    .. warning::

        The optimizer must be initialized *after* the module has been wrapped,
        since FSDP will shard parameters in-place and this will break any
        previously initialized optimizers.

144
145
146
147
148
149
150
    .. warning::

        If you wrap every parameter inside a nested FSDP and leaving the outer
        FSDP empty without any parameter, checkpointing activation may trigger
        an assert on the backward pass. The solution is to leave some parameters
        to the outer FSDP.

151
152
153
154
155
156
    .. warning::

        If activation checkpointing is used with FSDP, it is strongly encouraged
        to use ``checkpoint_wrapper`` function from FairScale instead of the
        ``checkpoint`` function from PyTorch.

157
    Args:
Min Xu's avatar
Min Xu committed
158
        module (nn.Module):
159
            module to be wrapped with FSDP.
Min Xu's avatar
Min Xu committed
160
161
162
        process_group (Optional):
            process group for sharding
        reshard_after_forward (bool, Optional):
Myle Ott's avatar
Myle Ott committed
163
164
165
            if ``True``, reshard parameters after the forward pass. This saves
            memory but slows training. This is only relevant when resharding
            individual layers.
Min Xu's avatar
Min Xu committed
166
        mixed_precision (bool, Optional):
Myle Ott's avatar
Myle Ott committed
167
168
169
            if ``True``, inputs, activations and gradients will be kept in FP16;
            computation and communication will occur in FP16; and a (sharded)
            master copy of the model weights will be maintained in FP32.
Min Xu's avatar
Min Xu committed
170
        fp32_reduce_scatter (bool, Optional):
Myle Ott's avatar
Myle Ott committed
171
172
            if ``True``, then reduce-scatter gradients in FP32. This is only
            relevant when *``mixed_precision``* is ``True``.
Min Xu's avatar
Min Xu committed
173
        flatten_parameters (bool, Optional):
Myle Ott's avatar
Myle Ott committed
174
175
            if ``True``, flatten parameters into a single contiguous tensor,
            which improves training speed.
176
        move_params_to_cpu (bool, Optional):
Myle Ott's avatar
Myle Ott committed
177
178
            if ``True``, offload FP32 params to CPU. This is only relevant when
            *``mixed_precision``* is ``True``.
Min Xu's avatar
Min Xu committed
179
        compute_dtype (torch.dtype, Optional):
Myle Ott's avatar
Myle Ott committed
180
181
182
            dtype for full parameters for computation. This defaults to
            ``torch.float32`` unless *``mixed_precision``* is set, in which case
            it defaults to ``torch.float16``.
183
184
        buffer_dtype (torch.dtype, Optional):
            dtype for buffers for computation. This defaults to ``compute_dtype``.
Min Xu's avatar
Min Xu committed
185
        move_grads_to_cpu (bool, Optional):
Myle Ott's avatar
Myle Ott committed
186
187
188
            move gradient shard to CPU after reduction. This is useful when
            combined with CPU-based optimizers. It defaults to the value of
            *``cpu_offload``*.
Min Xu's avatar
Min Xu committed
189
        bucket_cap_mb (int, Optional):
Myle Ott's avatar
Myle Ott committed
190
            FSDP will bucket parameters so that gradient reduction can
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            be more efficient for small parameters.
            ``bucket_cap_mb`` controls the bucket size in MegaBytes (MB). Buckets
            are sub-divided based on world_size, so the max shard size is roughly
            ``bucket_cap_mb / world_size``. There is one bucketer (with potentially
            multiple ``bucket_cap_mb`` sized buffers shared by all FSDP instances.
            Large gradient tensors are directly reduced without using the buffers.
            The buffers are there to reduce communication overhead for small tensors.
            Overlapping with computation happens due to use of a different CUDA stream
            than the computation CUDA stream. The total memory overhead per buffer is around
            ``bucket_cap_mb / world_size * (world_size + 1)``.
            The buffers are allocated during the backward pass and freed at the end
            of the backward pass to save more memory for other phases of the
            training process.
            Note, the memory vs. speed tradeoff of bucket size is very different
            from that of the DDP engine. In DDP, the buffer size ``1MB + n*cap_mb``,
            until n is big enough to cover the entire model size. The order
            of which buffer is ready there is more rigid and DDP requires all
            gradients to be computed in the backward. In FSDP, the buffer size
            does not change with model size (it changes based on number of
            <dtype, device, process_group> tuples) and gradient ready order matters
            little since FSDP has a final flush call that ensures everything is reduced
            and not all gradients need to be upfront known. Overlapping with compute is
            done differently too.
            Values <= 0 disable bucketing.
Myle Ott's avatar
Myle Ott committed
215
            Default: 25.
216
217
218
219
220
        compute_device (torch.device, Optional):
            device for computation. If not given and module params are on a CUDA
            device, the param's device will be used. If not given and module
            params are on CPU, then the current CUDA device (as indicated by
            ``torch.cuda.current_device()`` will be used.
221
222
223
224
225
226
        no_broadcast_optim_state: (bool, Optional)
            do not broadcast this modules optimizer state when ``gather_full_optim_state_dict`` is called.
            If you set this true, you are expected to overwrite the relevant state entries of the returned optimizer state dict
            with the proper state at each rank. This is useful for situations, like Mixture Of Experts,
            where all but a few parameters can fit on one node.
            Default: False
227
228
229
230
        state_dict_device (torch.device, Optional):
            device for parameters returned by :func:`state_dict`. If not given,
            this will default to ``compute_dtype``. Note that only the device
            type will be respected (e.g., "cuda:0" and "cuda:1" are the same).
231
232
233
234
235
236
        clear_autocast_cache (bool):
            When using mixed precision training with `torch.amp.autocast`, if the model weights
            are in FP32, autocast maintains a cache for downcasted weights. The cache can cause
            GPU OOM during the forward pass. Setting this flag to true will help clearing this
            cache as inner FSDP instances finish part of the forward pass to save GPU memory.
            Default: False
237
238
239
240
241
        force_input_to_fp32 (bool):
            Set to ``True`` to force input floating point tensors to be FP32 (if they are FP16)
            when the FSDP instance is in full precision mode. This helps avoid issues of running
            SyncBatchNorm with AMP and checkpoint_wrapper.
            Default: False
242
243
244
        verbose (bool):
            Set this to ``True`` to turn on verbose output for model's string representation.
            Default: False
245
246
247
        cpu_offload (bool, Optional):
            if ``True``, offload FP32 params to CPU. This is only relevant when
            *``mixed_precision``* is ``True``. Note: This arg will be deprecated in favor of
248
            *``move_params_to_cpu``* in an upcoming release.
249
250
251
252
253
254
255
256
257
258
    """

    def __init__(
        self,
        module: nn.Module,
        process_group: Optional[ProcessGroup] = None,
        reshard_after_forward: bool = True,
        mixed_precision: bool = False,
        fp32_reduce_scatter: bool = False,
        flatten_parameters: bool = True,
259
        move_params_to_cpu: bool = False,
260
        compute_dtype: Optional[torch.dtype] = None,
261
        buffer_dtype: Optional[torch.dtype] = None,
262
263
        move_grads_to_cpu: Optional[bool] = None,
        bucket_cap_mb: int = 25,
264
        compute_device: Optional[torch.device] = None,
265
        no_broadcast_optim_state: Optional[bool] = False,
266
        state_dict_device: Optional[torch.device] = None,
267
        clear_autocast_cache: bool = False,
268
        force_input_to_fp32: bool = False,
269
        verbose: bool = False,
270
        cpu_offload: bool = False,
271
    ):
272
        init_start = time.time()
273
        super().__init__()
274
        self.process_group = process_group or get_process_group_cached()
275
276
277
278
279
280
        self.rank = self.process_group.rank()
        self.world_size = self.process_group.size()
        self.reshard_after_forward = reshard_after_forward
        self.mixed_precision = mixed_precision
        self.fp32_reduce_scatter = fp32_reduce_scatter
        self.flatten_parameters = flatten_parameters
281
        self.move_params_to_cpu = move_params_to_cpu or cpu_offload
282
        self.compute_dtype = compute_dtype or (torch.float16 if mixed_precision else torch.float32)
283
        self.buffer_dtype = buffer_dtype or self.compute_dtype
284
        self.move_grads_to_cpu = self.move_params_to_cpu if move_grads_to_cpu is None else move_grads_to_cpu
285
        self.bucket_cap_mb = bucket_cap_mb
286
        self.compute_device = compute_device or _get_default_cuda_device(module)
287
288
        self.uncollected_opt_state: Dict[int, Dict] = {}
        self.no_broadcast_optim_state = no_broadcast_optim_state
289
        self.state_dict_device = state_dict_device or self.compute_device
290
        self.clear_autocast_cache = clear_autocast_cache
291
        self.force_input_to_fp32 = force_input_to_fp32
292
        self.verbose = verbose
293

294
        self.gradient_predivide_factor: float = self._get_gradient_predivide_factor(self.world_size)
295
        self.gradient_postdivide_factor: float = self.world_size / self.gradient_predivide_factor
296
297

        self.numel_padded_per_param: List[int] = []
298
        self._tstart = time.time()
299
300
301

        if self.fp32_reduce_scatter and not self.mixed_precision:
            raise ValueError("fp32_reduce_scatter requires mixed_precision=True")
302
        if self.move_params_to_cpu and not self.mixed_precision:
303
304
            raise ValueError("cpu_offload requires mixed_precision=True")

305
306
307
308
        # skip validation if the process group was created above
        if process_group:
            validate_process_group(self.compute_device, self.process_group)

309
        # enable pytorch sync_bn just in case model contains sync_bn layers.
310
        enable_pytorch_sync_bn(module)
311
312
313
314

        # Only handle params which are not already sharded. This enables
        # sharding individual layers of a Module, with an outer wrapper to
        # shard any leftover parameters.
315
316
317
318
319
320
        param_names = []
        params = []
        for param_name, param in module.named_parameters():
            if not hasattr(param, "_is_sharded"):
                param_names.append(param_name)
                params.append(param)
321

322
        self._has_params = len(params) > 0
323

324
325
326
327
328
        # For now, it is either all flatten or none flatten. This will be extended to
        # multiple flatten groups in my next PR.
        to_be_flatten_params: List[List[Parameter]] = [[]]
        non_flatten_params = params
        param_name_groups = [[n] for n in param_names]
329
        if self.flatten_parameters:
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
            to_be_flatten_params = [params]
            non_flatten_params = []
            param_name_groups = [param_names]
        del param_names

        self._fsdp_wrapped_module: nn.Module = FlattenParamsWrapper(module, param_list=to_be_flatten_params)
        del module  # free original module in case it helps garbage collection

        # Now, in this FSDP wrapper class, we keep a list of to-be-flatten and not-to-be-flatten
        # params for doing sharding, gradient hooks, etc. Note, the ordering of the
        # list matters: flatten params are always in the front.
        #
        # The self._num_flatten_params and self._param_name_groups are computed
        # and kept here to support summon_full_params and shard-to-full weight
        # consolidation.
        self.params = cast(List[Parameter], self._fsdp_wrapped_module.flat_params) + non_flatten_params
        self._num_flatten_params = len(self._fsdp_wrapped_module.flat_params)
        self._param_name_groups = param_name_groups
348
349
350
351
352
353
354
355
356
357
358
359

        # Shard module parameters in place
        self._shard_parameters_()

        # Make sure all parameters are sharded.
        for n, p in self.named_parameters():
            assert hasattr(p, "_is_sharded"), f"found unsharded parameter: {n} ; {p.size()}"

        self._reset_lazy_init()

        # Flag to indicate if we require gradient reduction in the backward
        # pass. This will be False when inside the no_sync context manager.
360
        self._require_backward_grad_sync: bool = True
361

362
        # Enum to indicate if we're in the forward/backward pass, idle, etc.
363
364
        self.training_state = TrainingState.IDLE

365
366
367
        # Flag to indicate if the full params are gathered.
        self.has_full_params: bool = False

368
369
370
371
372
373
374
375
376
        # Register hook after state_dict() to remove the "_fsdp_wrapped_module."
        # prefix and before load_state_dict() to add it back.
        self._register_state_dict_hook(_post_state_dict_hook)
        self._register_load_state_dict_pre_hook(_pre_load_state_dict_hook)

        # Flag to indicate whether state_dict() should automatically summon the
        # full params. This defaults to True, but may be set to False if the
        # user explicitly requests the local state dict via local_state_dict().
        self._return_full_state_dict = True
377
378
        init_end = time.time()

379
        logging.debug(
380
381
            f"FSDP.__init__(done): total_init_time: {(init_end - init_start): .4f} num_params: {(sum(p.numel() for p in self.params))}"
        )
382

383
        # Flag to guard against preparing gradients multiple times per iteration.
384
385
386
387
388
        # This is reset at the end of the backward pass.
        self._pre_backward_hook_has_run = False

    def _get_gradient_predivide_factor(self, world_size: int) -> float:
        factor: int = 1
389
        while world_size % factor == 0 and world_size / factor > factor:
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
            factor *= 2
        return float(factor)

    def set_gradient_divide_factors(self, pre: float, post: float, recursive: bool) -> None:
        """Allowing user to override the pre and post divide factors.

        Args:
            pre (float): divide factor before the reduction.
            post (float): divide factor after the reduction.
            recursive (bool): recursively set it for all child FSDP instances or not.
        """
        self.assert_state(TrainingState.IDLE)
        if recursive:
            for module in self.modules():
                if isinstance(module, FullyShardedDataParallel) and module != self:
                    module.set_gradient_divide_factors(pre, post, False)
        self.gradient_predivide_factor = pre
        self.gradient_postdivide_factor = post
408

409
    @property
410
411
412
413
    def module(self) -> FlattenParamsWrapper:
        """ make model.module accessible, just like DDP. """
        assert isinstance(self._fsdp_wrapped_module, FlattenParamsWrapper)
        return self._fsdp_wrapped_module
414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    def apply(self, fn: Callable[[nn.Module], None]) -> "FullyShardedDataParallel":
        """
        Applies ``fn`` recursively to every submodule (as returned by
        ``.children()``) as well as self. Typical use includes initializing the
        parameters of a model.

        Compared to ``torch.nn.Module.apply``, this version additionally gathers
        the full parameters before applying ``fn``. It should not be called from
        within another ``summon_full_params`` context.

        Args:
            fn (nn.Module): function to be applied to each submodule

        Returns:
            Module: self
        """
        is_uninitialized = self._is_root is None
        self.assert_state(TrainingState.IDLE)
        with self.summon_full_params(recurse=False):
            return_value = super().apply(fn)
        # summon_full_params will call _lazy_init, which sets _is_root. However,
        # apply() may be called directly on children instances to do weight
        # init, so we should reset the _is_root flag in this case.
        if is_uninitialized and self._is_root:
            for module in self.modules():
                if isinstance(module, FullyShardedDataParallel):
                    module._reset_lazy_init()
        return return_value

    def _cast_buffers(
        self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, memo: Optional[Set] = None
    ) -> None:
        """Move all buffers to the given *device* and *dtype*.

        If *device* or *dtype* are not given, then they will default to
        ``self.compute_device`` and ``self.buffer_dtype``, respectively. In the
        case of nested FSDP instances, we will respect the child instance's
        ``compute_device`` and ``buffer_dtype`` configuration.

        Args:
            device (torch.device, Optional):
                device to cast buffers to (defaults to compute_device)
            dtype (torch.dtype, Optional):
                dtype to cast buffers to (defaults to buffer_dtype)
            memo (Set, Optional):
                set of modules that have already been processed
        """
        if memo is None:
            memo = set()
        for module in self.modules():
            if module is not self and isinstance(module, FullyShardedDataParallel):
                # Allow any child FSDP instances to handle their own buffers.
                module._cast_buffers(device=device, dtype=dtype, memo=memo)
            elif module not in memo:
                memo.add(module)
                for name, buf in module.named_buffers(recurse=False):
                    if buf is None:
                        continue
                    buf = buf.to(device=device or self.compute_device)
                    if torch.is_floating_point(buf):
                        buf = buf.to(dtype=dtype or self.buffer_dtype)
                    setattr(module, name, buf)
477
478
479

    @property
    def params_with_grad(self) -> List[Parameter]:
480
        """[p for p in self.parameters() if p.grad is not None]"""
481
482
483
484
485
486
487
488
489
490
        return [p for p in self.parameters() if p.grad is not None]

    @torch.no_grad()
    def clip_grad_norm_(
        self,
        max_norm: Union[float, int],
        norm_type: Union[float, int] = 2.0,
        # filter_params_fn: Callable[[Any], Any] = None,
    ) -> torch.Tensor:
        """
Myle Ott's avatar
Myle Ott committed
491
492
493
        Clip all gradients at this point in time. The norm is computed over all
        gradients together, as if they were concatenated into a single vector.
        Gradients are modified in-place.
494

Myle Ott's avatar
Myle Ott committed
495
        Args:
496
            max_norm (float or int): max norm of the gradients
Myle Ott's avatar
Myle Ott committed
497
498
            norm_type (float or int): type of the used p-norm. Can be ``'inf'``
                for infinity norm.
499
500
501
502

        Returns:
            Total norm of the parameters (viewed as a single vector).

Myle Ott's avatar
Myle Ott committed
503
504
505
506
507
508
        .. note:: This is analogous to `torch.nn.utils.clip_grad_norm_` but
            handles the partitioning and multiple devices per rank under the
            hood. The default torch util is not applicable here, because each
            rank only has a partial view of all the grads in the model, so
            calling it in the OSS context would lead to different scaling being
            applied per subset of model parameters.
509

Myle Ott's avatar
Myle Ott committed
510
511
        .. warning:: This needs to be called on all ranks, since synchronization
            primitives will be used.
512
        """
513
514
515
516
        # We don't call torch.cuda.synchronize() here, since clipping can be
        # inside the train loop and we probably don't want to force a GPU-CPU sync.
        # _lazy_init should be sufficient, since it will force the other streams
        # to sync with the default stream (via _wait_for_previous_optim_step).
517
        self._lazy_init()
518
        assert self._is_root, "clip_grad_norm should only be called on the root (parent) instance"
519
        self.assert_state(TrainingState.IDLE)
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

        max_norm = float(max_norm)
        norm_type = float(norm_type)
        params_with_grad = self.params_with_grad
        if not self.children_share_process_group:
            raise NotImplementedError(
                "clip_grad_norm requires that all params share one process group. clip_grad_by_value_ should work"
            )
        # Computes the max norm for this shard's gradients and sync's across workers
        local_norm = calc_grad_norm(params_with_grad, norm_type).cuda()
        if norm_type == inf:
            total_norm = local_norm
            dist.all_reduce(total_norm, op=torch.distributed.ReduceOp.MAX, group=self.process_group)
        else:
            total_norm = local_norm ** norm_type
            dist.all_reduce(total_norm, group=self.process_group)
            total_norm = total_norm ** (1.0 / norm_type)

        if self.move_grads_to_cpu:
            total_norm = total_norm.cpu()
540

541
542
543
544
545
        # Now multiply each grad by (max_norm/total_norm), same as torch 1.7 https://tinyurl.com/3wtxhhqq)
        clip_coef = torch.tensor(max_norm, dtype=total_norm.dtype, device=total_norm.device) / (total_norm + 1e-6)
        if clip_coef < 1:
            # multiply by clip_coef
            for p in params_with_grad:
546
547
                assert p.grad is not None
                p.grad.detach().mul_(clip_coef.to(p.grad.device))
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

        return total_norm

    @torch.no_grad()
    def _shard_parameters_(self) -> None:
        """
        At initialization we wrap a module with full parameters and shard the
        parameters in-place. Sharding is implemented by viewing each parameter
        as a 1D Tensor and retaining only a single slice, where the slice size
        is determined by the number of data parallel workers.

        Wrapping modules with many small parameters (or with a very large data
        parallel world size) will result in many small parameter shards and slow
        performance. In this case it's better to set *``flatten_parameters``* to
        ``True``, so that all of the small parameters in the module are combined
        into a single contiguous Tensor and sharded once.

        After this initial sharding is complete, the user can initialize a
        ``torch.optim.Optimizer`` in the usual way, i.e.::

        .. code-block:: python

            optim = torch.optim.Adam(sharded_module.parameters(), lr=0.0001)

        The optimizer will see only a single slice of parameters and will thus
        allocate less memory for optimizer state, avoiding redundancy across
        data parallel workers.
        """
576
        self.numel_padded_per_param = []
577
578
579
580
581
582
583
584
585
586
587
        for p in self.params:
            assert not hasattr(p, "_is_sharded")
            assert p.is_floating_point()
            if self.mixed_precision:
                assert p.dtype == torch.float32

            # If world_size is 1, then we all-reduce grads instead of sharding.
            p._is_sharded = self.world_size > 1
            p._orig_size = p.data.size()

            if not p._is_sharded:
588
                self.numel_padded_per_param.append(0)
589
590
591
592
593
                continue
            p._is_sharded = True

            # Replace p.data with the relevant shard.
            orig_data = p.data
594
595
            p.data, num_padded = self._get_shard(p.data)
            self.numel_padded_per_param.append(num_padded)
596
            free_storage_(orig_data)
597
        assert len(self.numel_padded_per_param) == len(self.params)
598

599
600
    def _get_shard(self, tensor: torch.Tensor) -> Tuple[torch.Tensor, int]:
        """Return the local shard of a full tensor."""
601
602
603
604
605
606
607
608
609
610
611
612
        # Shard using torch.chunk to match all-gather/reduce-scatter.
        chunks = list(torch.flatten(tensor).chunk(self.world_size))
        while len(chunks) < self.world_size:
            chunks.append(chunks[0].new_empty(0))

        # Determine number of padding elements.
        num_to_pad = chunks[0].numel() - chunks[self.rank].numel()
        assert num_to_pad >= 0, num_to_pad

        shard = chunks[self.rank].clone()
        if num_to_pad > 0:
            shard = F.pad(shard, [0, num_to_pad])
613
        return shard, num_to_pad
614

615
    def extra_repr(self) -> str:
616
617
        repr = (
            f"world_size={self.world_size}, "
618
            f"flatten_parameters={self.flatten_parameters}, "
619
            f"mixed_precision={self.mixed_precision}, "
620
        )
621
622
623
624
625
626
627
        if self.verbose:
            repr = (
                f"rank={self.rank}, " + repr + f"reshard_after_forward={self.reshard_after_forward}, "
                f"compute_dtype={self.compute_dtype}, "
                f"buffer_dtype={self.buffer_dtype}, "
                f"fp32_reduce_scatter={self.fp32_reduce_scatter}, "
                f"compute_device={self.compute_device}"
628
                f"cpu_offload={self.move_params_to_cpu}, "
629
630
631
                f"move_grads_to_cpu={self.move_grads_to_cpu}, "
                f"bucket_cap_mb={self.bucket_cap_mb}, "
                f"clear_autocast_cache={self.clear_autocast_cache}"
632
                f"force_input_to_fp32={self.force_input_to_fp32}"
633
634
            )
        return repr
635
636
637
638
639
640
641
642
643

    def __getattr__(self, name: str) -> Any:
        """Forward missing attributes to wrapped module."""
        try:
            return super().__getattr__(name)  # defer to nn.Module's logic
        except AttributeError:
            return getattr(self.module, name)

    def __getstate__(self) -> Dict[str, str]:
644
        """Serialize the state of the current FSDP instance.
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

        Some properties are not serializable (e.g., process groups, streams), so
        we remove them and try to reconstruct them in :func:`__setstate__`.
        """
        state = copy.copy(self.__dict__)
        state["is_sharded"] = [p._is_sharded for p in self.params]
        state["orig_sizes"] = [p._orig_size for p in self.params]
        if state["process_group"] is not None:
            state["process_group"] = "MISSING"  # process_group isn't pickleable
        self._reset_lazy_init()
        return state

    def __setstate__(self, state: Dict[str, Any]) -> None:
        """Intercept state setting and perform needed changes on params."""
        super().__setstate__(state)

        def fixup(p: Parameter, is_sharded: bool, size: torch.Size) -> Parameter:
            assert isinstance(p, Parameter)
            p.data = p.data.clone()  # move tensors out of shared memory
            p._is_sharded = is_sharded
            p._orig_size = size
            return p

        self.params = [
            fixup(p, is_sharded, size) for p, is_sharded, size in zip(self.params, self.is_sharded, self.orig_sizes)
        ]
        del self.is_sharded
        del self.orig_sizes
        self._reset_lazy_init()

675
676
677
678
679
    def named_parameters(self, *args: Any, **kwargs: Any) -> Iterator[Tuple[str, Parameter]]:
        """Returns an iterator over the module parameters, yielding both the name of the
        parameter as well as the parameter.

        With FSDP, the `named_parameters` function implemented in `nn.Module` will not
680
        be able to return the name and param when we use flattened parameters unless
681
682
        we call this function under a `summon_full_params` context.

683
        If you want the full param to be returned, you should call this function
684
685
686
687
688
689
690
691
692
693
694
695
696
697
        under a `summon_full_params` context when using flattened or original params.
        """
        named_param = super().named_parameters(*args, **kwargs)
        for name, param in named_param:
            if (
                hasattr(self, "flatten_parameters")
                and self.flatten_parameters
                and hasattr(self, "training_state")
                and self.training_state != TrainingState.SUMMON_FULL_PARAMS
            ):
                yield name, param
            else:
                yield _clean_path(name), param

698
699
700
701
    def __getitem__(self, key: int) -> Any:
        """Forward indexing calls in case the module is a nn.Sequential."""
        return self.module.__getitem__(key)

702
703
704
705
706
707
708
709
710
711
712
713
    @typing.overload
    def state_dict(
        self, destination: Mapping[str, torch.Tensor], prefix: str = ..., keep_vars: bool = ...
    ) -> Mapping[str, torch.Tensor]:
        ...

    @typing.overload
    def state_dict(self, prefix: str = ..., keep_vars: bool = ...) -> "OrderedDict[str, torch.Tensor]":
        ...

    # Since we have overloads above, we can use Any here.
    def state_dict(self, *args: Any, **kwargs: Any) -> Any:
714
715
716
        """
        Returns the whole (unsharded) state of the module. Parameters are not
        sharded, so the resulting state_dict can be loaded directly by the
Myle Ott's avatar
Myle Ott committed
717
        wrapped Module without any sharding-specific logic. Returned tensors
718
        will be full precision (e.g., FP32).
Myle Ott's avatar
Myle Ott committed
719
720
721

        .. warning:: This needs to be called on all ranks, since synchronization
            primitives will be used.
722
        """
723
724
        if torch.cuda.is_available():
            torch.cuda.synchronize()
725
        self._lazy_init()
726
727
728
729

        def maybe_cast_buffers(dtype: Optional[torch.dtype] = None) -> None:
            if self.mixed_precision:
                self._cast_buffers(dtype=dtype)
730

731
732
        if self._return_full_state_dict:
            if self.training_state != TrainingState.SUMMON_FULL_PARAMS:
733
                with self.summon_full_params(recurse=False, volatile=True):
734
                    maybe_cast_buffers(torch.float32)
735
736
                    state_dict = super().state_dict(*args, **kwargs)
            else:
737
                maybe_cast_buffers(torch.float32)
738
739
                state_dict = super().state_dict(*args, **kwargs)
        else:
740
            maybe_cast_buffers(torch.float32)
741
            state_dict = self.module.flat_state_dict(*args, **kwargs)
742

743
        if self.move_params_to_cpu:
744
745
746
            for k in state_dict.keys():
                state_dict[k] = state_dict[k].cpu()

747
748
        # In case we are in mixed precision, restore buffers back to buffer_dtype.
        maybe_cast_buffers()
749
750
        return state_dict

751
752
753
754
755
756
757
758
759
760
761
762
    @typing.overload
    def local_state_dict(
        self, destination: Mapping[str, torch.Tensor], prefix: str = ..., keep_vars: bool = ...
    ) -> Mapping[str, torch.Tensor]:
        ...

    @typing.overload
    def local_state_dict(self, prefix: str = ..., keep_vars: bool = ...) -> "OrderedDict[str, torch.Tensor]":
        ...

    # Since we have overloads above, we can use Any here.
    def local_state_dict(self, *args: Any, **kwargs: Any) -> Any:
763
764
765
        """
        Returns the local (sharded) state of the module. Parameters are sharded,
        so the resulting state_dict can only be loaded after the Module has been
766
        wrapped with FSDP.
767
        """
768
769
770
771
772
        with contextlib.ExitStack() as stack:
            # Tell any nested FSDP instances not to auto summon full params.
            for module in self.modules():  # includes self
                if isinstance(module, FullyShardedDataParallel):
                    stack.enter_context(module._no_return_full_state_dict())
773
774
775
            # We need to specially call FSDP's state_dict function in case
            # self.state_dict is a function from a child class of FSDP.
            return FullyShardedDataParallel.state_dict(self, *args, **kwargs)
776
777
778
779
780
781
782
783
784

    @contextlib.contextmanager
    def _no_return_full_state_dict(self) -> Generator:
        backup = self._return_full_state_dict
        self._return_full_state_dict = False
        try:
            yield
        finally:
            self._return_full_state_dict = backup
785

786
    def _load_state_dict(
787
788
        self, state_dict: Union[Dict[str, torch.Tensor], "OrderedDict[str, torch.Tensor]"], strict: bool = True
    ) -> NamedTuple:
Myle Ott's avatar
Myle Ott committed
789
790
791
792
793
794
        """
        Load a whole (unsharded) state_dict.

        .. warning:: This needs to be called on all ranks, since synchronization
            primitives will be used.
        """
795
796
797
798
799
800
801
        if self._return_full_state_dict:
            with self.summon_full_params():
                return self.module.load_state_dict(state_dict, strict)
        else:
            torch.cuda.synchronize()
            self._lazy_init()
            return self.module.load_state_dict(state_dict, strict)
802

803
804
805
806
807
    def load_state_dict(
        self, state_dict: Union[Dict[str, torch.Tensor], "OrderedDict[str, torch.Tensor]"], strict: bool = True
    ) -> NamedTuple:
        return self._load_state_dict(state_dict, strict)

808
809
810
811
    def load_local_state_dict(
        self, state_dict: Union[Dict[str, torch.Tensor], "OrderedDict[str, torch.Tensor]"], strict: bool = True
    ) -> NamedTuple:
        """Load a local (sharded) state_dict."""
812
813
814
815
816
        with contextlib.ExitStack() as stack:
            # Tell any nested FSDP instances not to auto summon full params.
            for module in self.modules():  # includes self
                if isinstance(module, FullyShardedDataParallel):
                    stack.enter_context(module._no_return_full_state_dict())
817
            output = self._load_state_dict(state_dict, strict)
818
        return output
819
820
821
822

    @contextlib.contextmanager
    def no_sync(self) -> Generator:
        """
823
        A context manager to disable gradient synchronizations across FSDP
824
825
        processes. Within this context, gradients will be accumulated on module
        variables, which will later be synchronized in the first
826
827
        forward-backward pass after exiting the context.

828
        .. note:: This likely results in higher memory usage because FSDP will
829
830
            accumulate the full model gradients (instead of gradient shards)
            until the eventual sync.
831
832
833
834

        .. note:: Gradient accumulation can be done without this context,
            avoiding the extra GPU memory overhead, but with the extra
            networking overhead.
835
836
837
838
        """
        self._lazy_init()
        assert self._is_root, "no_sync on inner FSDP is not supported"
        self.assert_state(TrainingState.IDLE)
839
        # This instance may wrap other FSDP instances and we
840
841
842
843
        # need to set all of them to accumulate gradients.
        old_flags = []
        for m in self.modules():  # includes self
            if isinstance(m, FullyShardedDataParallel):
844
845
                old_flags.append((m, m._require_backward_grad_sync))
                m._require_backward_grad_sync = False
846
847
848
849
        try:
            yield
        finally:
            for m, old_flag in old_flags:
850
                assert m._require_backward_grad_sync is False
851
                m._require_backward_grad_sync = old_flag
852

853
    @contextlib.contextmanager
854
    def summon_full_params(self, recurse: bool = True, volatile: bool = False) -> Generator:
855
        """
856
857
        A context manager to expose full params for the current FSDP instance.
        Can be useful *after* forward/backward for a model to get the params for
858
859
        additional processing or checking. Parameters will be gathered in full
        precision (e.g., FP32).
860

861
        .. note:: This can be used on inner FSDPs.
862

863
864
        .. note:: This can *not* be used within a forward or backward pass. Nor
            can forward and backward be started from within this context.
865
866
867
868
869
870
871
872
873
874
875
876
877

        .. note:: The full parameters will be freed after the context manager
            exits; it is up to the caller to clone them if needed.

        .. note:: The full parameters can be modified, but only the portion
            corresponding to the local param shard will persist after the
            context manager exits (unless ``volatile=True``, in which case there
            are no guarantees about persistence).

        Args:
            recurse (bool, Optional): recursively summon all params for nested
                FSDP instances (default: True)
            volatile (bool, Optional): if ``True``, modifications to params are
878
                not guaranteed to persist after the context manager exists;
879
                enabling this can be slightly more efficient (default: False)
880
        """
881
882
        if recurse:
            with contextlib.ExitStack() as stack:
883
                # Summon all params for any nested FSDP instances.
884
885
                for module in self.modules():
                    if isinstance(module, FullyShardedDataParallel):
886
887
                        stack.enter_context(module.summon_full_params(recurse=False, volatile=volatile))
                # Yield to the caller, with full params in all nested instances.
888
                yield
889
            # Exiting from the ExitStack will re-shard params.
890
891
892
893
894
895
896
897
            return
        else:
            torch.cuda.synchronize()
            self._lazy_init()
            self.assert_state(TrainingState.IDLE)
            # Set the state so that we assert when trying to go into
            # forward/backward.
            self.training_state = TrainingState.SUMMON_FULL_PARAMS
898
            full_tensors = self._rebuild_full_params(force_full_precision=True)
899
            assert full_tensors is not None
900
            with contextlib.ExitStack() as stack:
901
                if self.module.is_flattened:
902
                    # Update flattened views to point to fully-sized tensors. We
903
                    # use self.params instead of full_tensors since the
904
                    # latter may contain padding.
905
906
907
908
909
                    stack.enter_context(
                        self.module.unflatten_params(
                            flat_params=[p.data for p in self.params[: self._num_flatten_params]]
                        )
                    )
910
911
912
913
914
915
916
917
918
                try:
                    yield
                finally:
                    stack.close()
                    assert len(full_tensors) == len(self.params)
                    for p, (full_tensor, safe_to_free) in zip(self.params, full_tensors):
                        if not volatile:
                            # Copy any changes made to the full params back into
                            # the corresponding local shards.
919
                            local_shard, _ = self._get_shard(full_tensor)
920
921
922
                            p._fp32_shard.copy_(local_shard.view_as(p._fp32_shard))
                        if safe_to_free:
                            free_storage_(full_tensor)
923
                    self.has_full_params = False
924
925
                    self._use_fp32_param_shard()
                    self.training_state = TrainingState.IDLE
926

927
928
929
930
931
    def _reset_lazy_init(self) -> None:
        """Reset instance so :func:`_lazy_init` will run on the next forward."""
        self._is_root: Optional[bool] = None
        self._streams: Dict[str, torch.cuda.Stream] = {}
        self._reducer: Optional[ReduceScatterBucketer] = None
932
933
934
        for p in self.params:
            if hasattr(p, "_fp32_shard"):
                del p._fp32_shard  # reset _init_param_attributes
935
936
937

    def _lazy_init(self) -> None:
        """Initialization steps that should happen lazily, typically right
938
        before the first forward pass.
939
        """
940
941
942
943
944
945
946
947
948
949
950
951
952
        # Initialize param attributes lazily, in case the param's dtype or
        # device changes after __init__.
        for p in self.params:
            self._init_param_attributes(p)

        # Initialize _is_root and setup streams. These steps would ideally
        # happen in __init__, but _is_root can only be determined after the
        # entire model hierarchy is setup, thus we run it lazily.
        if self._is_root is None:
            self._set_is_root()
            self._setup_streams()

        if self._is_root:
953
954
955
956
            # Buffers stay on GPU, and don't get sharded. Since _cast_buffers
            # applies recursively, we only call this from the root instance.
            self._cast_buffers()

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
            # Don't free the full params for the outer-most (root) instance,
            # since those params will be needed immediately after for the
            # backward pass.
            self.reshard_after_forward = False

            # Due to the use of streams, we need to make sure the previous
            # ``optim.step()`` is done before we all-gather parameters.
            self._wait_for_previous_optim_step()

    @torch.no_grad()
    def _init_param_attributes(self, p: Parameter) -> None:
        """
        We manage several attributes on each Parameter instance. The first two
        are set by :func:`_shard_parameters_`:

            ``_is_sharded``: ``True`` if the Parameter is sharded or ``False``
                if the Parameter is intentionally not sharded (in which case we
                will all-reduce grads for this param).
            ``_orig_size``: the size of the original Parameter (before sharding)

        The remaining attributes are set here:
            ``_fp32_shard``: a single shard of the parameters in full precision
                (typically FP32, but this is dependent on the dtype of the model
                as it's passed in by the user). This can be on CPU or GPU
                depending on the value of *``cpu_offload``*.
            ``_fp16_shard``: if *``mixed_precision``* is ``True``, this will be
                a single shard of the parameters in FP16, used for all-gather.
            ``_full_param_padded``: the full weight (padded to be evenly
                divisible by ``world_size``), used for computation in the
                forward and backward pass. This will be resized in place and
                only materialized (via all-gather) as needed.
        """
        assert hasattr(p, "_is_sharded") and hasattr(p, "_orig_size")
        if hasattr(p, "_fp32_shard"):
            return

        # A single shard of the parameters in full precision.
        p._fp32_shard = p.data

        if self.mixed_precision:
            assert p._fp32_shard.dtype == torch.float32

999
            if self.move_params_to_cpu:
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
                assert p._fp32_shard.device == torch.device("cpu")
                # If we plan to keep the FP32 parameters on CPU, then pinning
                # memory allows us to later use non-blocking transfers when moving
                # the FP32 param shard to compute_device.
                p._fp32_shard = p._fp32_shard.pin_memory()
                p.data = p._fp32_shard

            # In mixed precision mode, we maintain a reduced precision
            # (typically FP16) parameter shard on compute_device for performing
            # the computation in the forward/backward pass. We resize the
            # storage to size 0 at init (here) and re-materialize (by copying
            # from _fp32_shard) as needed.
1012
            p._fp16_shard = torch.zeros_like(p._fp32_shard, device=self.compute_device, dtype=self.compute_dtype)
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
            free_storage_(p._fp16_shard)
        else:
            p._fp16_shard = None  # use _fp32_shard

        # We also maintain a full-sized parameter of type self.compute_dtype
        # (FP16 for mixed_precision or FP32 otherwise). We resize the
        # storage to size 0 at init (here) and only materialize as needed. The
        # storage may contain padding elements so that it is evenly divisible by
        # world_size, although these padding elements will be removed before the
        # relevant computation.
        if p._is_sharded:
            p._full_param_padded = torch.zeros(
1025
                p.data.numel() * self.world_size, device=self.compute_device, dtype=self.compute_dtype
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
            )
            free_storage_(p._full_param_padded)

        if self.move_grads_to_cpu:
            # We can optionally move the grad shard to CPU during the backward
            # pass. In this case, it's important to pre-allocate the CPU grad
            # shard in pinned memory so that we can do a non-blocking transfer.
            p._cpu_grad = torch.zeros_like(p.data, device="cpu").pin_memory()

    def _set_is_root(self) -> None:
        """If ``True``, implies that no other :class:`FullyShardedDataParallel`
        instance wraps this one. Called once by :func:`_lazy_init`.
Myle Ott's avatar
Myle Ott committed
1038
1039
1040
1041
        Also sets self.children_share_process_group = True if all child
        instances share the same process group. If some child instances use a
        different process group, self.clip_grad_norm_ will raise an error.
        """
1042
1043
        if self._is_root is not None:
            return
1044
        # No FSDP instance wraps this, else _is_root would be set to False.
1045
        self._is_root = True
1046
1047
1048
1049
1050
1051
1052
        # If final backward callback is never been queued, state should be IDLE.
        # If final backward callback is queued, the callback should be finished
        # and the state was reset to be IDLE.
        # This should be asserted at the beginning of forward pass in the root instance only.
        # For children instances, if they are checkpointed, state will not be reset to
        # IDLE after each inner forward/backward.
        self.assert_state(TrainingState.IDLE)
1053
1054
        # As the root, we now set all children instances to False and
        # give them a closure to try to queue a wait_for_post_backward.
1055
1056
        self.children_share_process_group = True
        for n, m in self.named_modules():
1057
            # `n != ""` excludes self.
1058
            if n != "" and isinstance(m, FullyShardedDataParallel):
1059
1060
1061
1062
1063
                # We relax the assert for non-root instance, when the nested inialized module is wrapped
                # again in FSDP later, for example after training to run inference.
                assert m._is_root is None or not m._is_root
                if m._is_root is None:
                    m._is_root = False
1064
1065
1066
                if m.process_group != self.process_group:
                    self.children_share_process_group = False

1067
1068
1069
1070
1071
1072
                # if child instance in its own (smaller) world, that was probably an attempt to avoid OOM.
                # Therefore gathering this child's optim state will probably cause OOM, so we won't do it.
                m.no_broadcast_optim_state = m.no_broadcast_optim_state or (
                    (m.world_size == 1) and (m.world_size < self.world_size) and (m.process_group != self.process_group)
                )

1073
1074
1075
1076
    def _setup_streams(self) -> None:
        """Create streams to overlap data transfer and computation."""
        if len(self._streams) > 0 or not self._is_root:
            return
1077
1078
1079
1080
1081
1082
1083
1084
1085

        if torch.cuda.is_available():
            # Stream to move main FP32 params (may be on CPU) to FP16 for forward.
            self._streams["fp32_to_fp16"] = torch.cuda.Stream()
            # Stream for all-gathering parameters.
            self._streams["all_gather"] = torch.cuda.Stream()
            # Stream for overlapping grad reduction with the backward pass.
            self._streams["post_backward"] = torch.cuda.Stream()

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
        # Helper for bucketing reduce-scatter ops. This is also shared with
        # children instances to improve bucket utilization.
        self._reducer = ReduceScatterBucketer(self.bucket_cap_mb)
        # We share streams with all children instances, which allows them to
        # overlap transfers across the forward pass without synchronizing with
        # the default stream.
        for n, m in self.named_modules():
            if n != "" and isinstance(m, FullyShardedDataParallel):
                m._streams = self._streams
                m._reducer = self._reducer

    def _wait_for_previous_optim_step(self) -> None:
        """
        The outer-most :class:`FullyShardedDataParallel` instance (i.e., the root
        instance) needs to synchronize with the default stream to ensure the
        previous optimizer step is done.
        """
1103
1104
        if not torch.cuda.is_available():
            return
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
        if self.mixed_precision:
            self._streams["fp32_to_fp16"].wait_stream(torch.cuda.current_stream())
        else:
            self._streams["all_gather"].wait_stream(torch.cuda.current_stream())

    def forward(self, *args: Any, **kwargs: Any) -> torch.Tensor:
        self._lazy_init()

        # Start of a forward pass.
        self.training_state = TrainingState.FORWARD

1116
1117
        # For root and mixed precision, we convert the input to FP16 (no_grad is needed for
        # the conversion).
1118
        if self._is_root and self.mixed_precision:
1119
1120
1121
1122
1123
1124
1125
            args, kwargs = cast_floats_to_right_precision(True, True, *args, **kwargs)

        # If enabled, convert the input to FP32 if we are in full precision.
        # no_grad is not used because the input might be for a non-root instance,
        # which mean autograd needs to go through the conversion.
        if self.force_input_to_fp32 and not self.mixed_precision:
            args, kwargs = cast_floats_to_right_precision(False, False, *args, **kwargs)
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138

        # All-gather full parameters. This will also transfer FP32 parameters to
        # ``self.compute_dtype`` (e.g., FP16 if *mixed_precision* is ``True``).
        self._rebuild_full_params()

        # Register backward hooks to reshard params and reduce-scatter grads.
        # These need to be re-registered every forward pass.
        self._register_post_backward_hooks()

        outputs = self.module(*args, **kwargs)

        if self.reshard_after_forward:
            self._free_full_params()
1139
1140
            if self.mixed_precision:
                self._free_fp16_param_shard()
1141
1142
1143
1144
1145
1146
1147
1148
1149

        # Switch to main FP32 param shard. We maintain this invariant throughout
        # the code, i.e., ``p.data == p._fp32_shard`` after each function. This
        # also ensures that after the first forward, the optimizer state will be
        # initialized with the correct dtype and (sharded) size, since optimizer
        # state is typically initialized lazily in ``optim.step()``.
        self._use_fp32_param_shard()

        # Register pre-backward hooks to all-gather the params for the backward
1150
1151
1152
1153
1154
1155
1156
        # pass (if output's grad was needed). This won't register anything if
        # we are in eval mode.
        #
        # Some model does forward pass multiple times, we need to register the
        # pre-backward hook on every output since the last output's hook has to
        # fire first to setup for backward. However, we use ``self._pre_backward_hook_has_run``
        # to prevent repeated overhead from multiple hook callbacks.
1157
1158
1159
1160
1161
        outputs = self._register_pre_backward_hooks(outputs)

        # Done with a forward pass.
        self.training_state = TrainingState.IDLE

1162
1163
1164
1165
1166
1167
        # Only need to clear cache during forward. During backward, the cache is not used.
        # TODO (Min): Future PyTorch versions may provide a way to completely disable this
        #     cache. Update this when that's available.
        if self.clear_autocast_cache:
            torch.clear_autocast_cache()

1168
1169
1170
1171
        return outputs

    def _register_pre_backward_hooks(self, outputs: Any) -> Any:
        """Register pre-backward hook to run before the wrapped module's
1172
1173
1174
1175
1176
        backward. Hooks should be attached to all outputs from the forward.

        Returns:
            outputs: new outputs with hooks registered if they requires gradient.
        """
1177
1178
1179
        if not torch.is_grad_enabled():
            return outputs  # don't register hooks if grad isn't enabled

1180
1181
1182
1183
1184
1185
        if self._is_root:
            # This actually means that only root instance has
            # _post_backward_callback_queued defined. Accidentally accessing this field
            # will assert on all other instances, giving us a nice bug checker.
            self._post_backward_callback_queued = False

1186
        def _pre_backward_hook(*unused: Any) -> None:
1187
1188
1189
1190
1191
1192
1193
            # try to queue final backward callback only once for root, so
            # that final backward callback is attached to the outer most
            # backward graph task and called after all the backward
            # calls are completed.
            if self._is_root:
                self._queue_wait_for_post_backward()

1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
            # All-gather full parameters or switching to the full params.
            #
            # This needs to be done on every pre_backward hook, even within the same
            # iteration (i.e. for checkpointed, multiple forward pass modules). This is
            # because after the forward pass (i.e. in checkpoint inner graph), we always
            # switch to fp32_shard in the ``forward`` function.
            #
            # We used to do this only after the ``self._pre_backward_hook_has_run``
            # boolean guard below, which is incorrect. It worked in pytorch < 1.9 for
            # some unknown reason, but pytorch 1.10 nightly exposed this bug.
            #
            # Note, both ``self._rebuild_full_params`` and ``self._use_full_params`` are
            # idempotent.  So in case they are called unnecessarily, they don't incur much
            # overhead.
            if self.reshard_after_forward:
                self._rebuild_full_params()
            else:
                self._use_full_params()

            # Only run the ``self._prep_grads_for_backward`` once per iteration (i.e. in case
            # it is multiple outputs or multiple forward passes).
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
            if not self._pre_backward_hook_has_run:
                self._pre_backward_hook_has_run = True
                # Start of a backward pass for the first time in an iteration.
                self.assert_state([TrainingState.IDLE, TrainingState.BACKWARD_PRE])
                # Prepare p.grad so that it is in the right shape, device, accumulated values, etc.
                self._prep_grads_for_backward()

            # Transition to BACKWARD_PRE state if currently IDLE. We can transition from BACKWARD_POST
            # to IDLE when FSDP is within activation checkpointing and called multiple times, due to the
            # extra forward pass for re-computation.
            if self.training_state == TrainingState.IDLE:
                self.training_state = TrainingState.BACKWARD_PRE
            self.assert_state([TrainingState.BACKWARD_PRE, TrainingState.BACKWARD_POST])
1228
1229

        def _register_hook(t: torch.Tensor) -> torch.Tensor:
1230
1231
            if t.requires_grad:
                t.register_hook(_pre_backward_hook)
1232
1233
1234
1235
1236
1237
1238
1239
            return t

        # Attach hooks to Tensor outputs.
        outputs = apply_to_tensors(_register_hook, outputs)

        return outputs

    def _register_post_backward_hooks(self) -> None:
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
        """
        Register backward hooks to reshard params and reduce-scatter grads.

        This is called during forward pass. The goal is to attach a hook
        on each of the parameter's gradient generating function (``grad_acc``
        below) so that the hook is called *after* all gradients for that
        param are computed.

        Goals:

        1. We want the hook to fire once and only once *after* all gradients
        are accumulated for a param.
        2. If it fires more than once, we end up incorrectly shard the grad
        multiple times. (could lead to dimension too small)
        3. If it fires once but too early or doesn't fire, we leave gradients
        unsharded. (could lead to dimension too large)

        Due to multiple-pass forward, this function can be called on
        the same parameter multiple times in a single forward pass. If we register
        the hook multiple time, we end up getting called multiple times. We
        could try to get a new hook every time and delete the previous one
        registered. However, due to *unknown reason* (I have debugged it for
        a long time!), in mixed precision mode, we get two different ``grad_acc``
        objects below during different calls of this function (in the same
        forward pass). If we keep the last one, the hook end up firing too
        early. In full precision mode, we luckily get the *same* ``grad_acc``
        object, so deleting and re-registering still ensured the hook fire
        once after all gradients are generated.

        Empirically, keep the first hook register per forward pass seems to
        work the best. We do need to remove the hook at the end of the
        backward pass. Otherwise, the next forward pass will not register
        a new hook, which is needed for a new forward pass.
        """
1274
1275
1276
1277
1278
        if not torch.is_grad_enabled():
            return  # don't register grad hooks if grad isn't enabled
        for p in self.params:
            if p.requires_grad:
                if hasattr(p, "_shard_bwd_hook"):
1279
1280
1281
1282
                    continue
                # Register a hook on the first call, empirically, autograd
                # fires it at the end for this param, which makes sense.
                p_tmp = p.expand_as(p)  # Get a grad_fn on p_tmp.
1283
                assert p_tmp.grad_fn is not None
1284
                grad_acc = p_tmp.grad_fn.next_functions[0][0]  # Gets its GradAccumulation object.
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
                handle = grad_acc.register_hook(functools.partial(self._post_backward_hook, p))
                p._shard_bwd_hook = (grad_acc, handle)

    @torch.no_grad()
    def _post_backward_hook(self, param: Parameter, *unused: Any) -> None:
        """
        At the start of :func:`_post_backward_hook`, ``param.grad`` contains the
        full gradient for the local batch. The reduce-scatter op will replace
        ``param.grad`` with a single shard of the summed gradient across all
        GPUs. This shard will align with the current GPU rank. For example::

            before reduce_scatter:
                param.grad (GPU #0): [1, 2, 3, 4]
                param.grad (GPU #1): [5, 6, 7, 8]

            after reduce_scatter:
                param.grad (GPU #0): [6, 8]    # 1+5, 2+6
                param.grad (GPU #1): [10, 12]  # 3+7, 4+8

        The local GPU's ``optim.step`` is responsible for updating a single
        shard of params, also corresponding to the current GPU's rank. This
        alignment is created by :func:`_shard_parameters_`, which ensures that
        the local optimizer only sees the relevant parameter shard.
        """
1309
        # First hook callback will see PRE state. If we have multiple params,
1310
1311
        # then subsequent hook callbacks will see POST state.
        self.assert_state([TrainingState.BACKWARD_PRE, TrainingState.BACKWARD_POST])
1312
        self.training_state = TrainingState.BACKWARD_POST
1313
1314
        if param.grad is None:
            return
1315

1316
        if param.grad.requires_grad:
1317
            raise RuntimeError("FSDP only works with gradients that don't require gradients")
1318

1319
        if self._require_backward_grad_sync or self.reshard_after_forward:
1320
            # Free full params. As a special case, we don't free the full params
1321
1322
            # when in a ``no_sync`` context (as inversely indicated by
            # ``self._require_backward_grad_sync``), since the params will not
1323
1324
            # get updated before the next forward. This saves networking
            # bandwidth but uses more GPU memory.
1325
1326
            self._free_full_params([param])

1327
1328
1329
1330
1331
1332
        if self.mixed_precision:
            # This is a no-op if reshard_after_forward is True, since we already
            # free the param shard when rebuilding the full params in the
            # pre_backward_hook.
            self._free_fp16_param_shard([param])

1333
1334
1335
        # Switch to FP32 shard after backward.
        self._use_fp32_param_shard([param])

1336
        if not self._require_backward_grad_sync:
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
            return

        # Wait for all work in the current stream to finish, then start the
        # reductions in post_backward stream.
        self._streams["post_backward"].wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(self._streams["post_backward"]):
            orig_grad_data = param.grad.data

            if self.mixed_precision and self.fp32_reduce_scatter:
                # Cast grad to FP32.
                param.grad.data = param.grad.data.to(param.dtype)

1349
            if self.gradient_predivide_factor > 1:
1350
                # Average grad by world_size for consistency with PyTorch DDP.
1351
                param.grad.data.div_(self.gradient_predivide_factor)
1352
1353
1354

            if param._is_sharded:
                assert self._reducer is not None
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
                # Save the unsharded grad for reduction. We will asynchronously accumulate the reduced gradient into
                # param._saved_grad_shard. If this FSDP module was called multiple times it's possible that multiple
                # gradient reductions will happen in an undefined order. But addition commutes, so this order doesn't
                # matter, neglecting rounding.
                grad = param.grad.data
                # Clear grad on the tensor, so any repeated gradient computations do not interfere with this reduction.
                #
                # The effect on memory consumption is not usually significant. No extra memory is allocated if this
                # module is called only once, reduction happens quickly, or the tensor is bucketed. If the module is
                # called multiple times, and the backwards pass runs far enough ahead of the `post_backward` stream,
                # then we can end up with multiple unsharded gradients allocated and queued for reduction.
                #
                # We could guard against this by using CUDA events (see record_event, wait_event in torch.cuda.Stream).
                # This ensures the `default` stream will wait for the `post_backward` stream to complete the last
                # reduction for this module, before scheduling additional reduction work. Then at most there are two
                # unsharded gradients allocated; one for a pending reduction, and one for gradient computation.
                param.grad = None
                callback_fn = functools.partial(self._post_reduction_hook, param)
                grad_chunks = chunk_and_pad(grad, self.world_size)
1374
1375
1376
1377
1378
1379
                self._reducer.reduce_scatter_async(grad_chunks, group=self.process_group, callback_fn=callback_fn)
            else:
                # Currently the only way for _is_sharded to be False is if
                # world_size == 1. This could be relaxed in the future, in which
                # case grads should be all-reduced here.
                assert self.world_size == 1
1380
                self._post_reduction_hook(param, param.grad.data)
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

            # After _post_backward_hook returns, orig_grad_data will eventually
            # go out of scope, at which point it could otherwise be freed for
            # further reuse by the main stream while the div/reduce_scatter/copy
            # are underway in the post_backward stream. See:
            # github.com/NVIDIA/apex/blob/master/apex/parallel/distributed.py
            orig_grad_data.record_stream(self._streams["post_backward"])

    def _post_reduction_hook(self, param: Parameter, reduced_grad: torch.Tensor) -> None:
        """Hook to call on each param after the reduce-scatter."""
        assert torch.cuda.current_stream() == self._streams["post_backward"]
1392
        self.assert_state(TrainingState.BACKWARD_POST)
1393
1394
        if self.gradient_postdivide_factor > 1:
            # Average grad by world_size for consistency with PyTorch DDP.
1395
            reduced_grad.data.div_(self.gradient_postdivide_factor)
1396
1397
1398
1399
        # Cast grad to param's dtype (typically FP32). Note: we do this
        # before the move_grads_to_cpu step so that this entire hook remains
        # non-blocking. The downside is a bit more D2H transfer in that case.
        if self.mixed_precision:
1400
1401
            orig_param_grad_data = reduced_grad.data
            reduced_grad.data = reduced_grad.data.to(dtype=param.data.dtype)
1402
1403
            # Don't let this memory get reused until after the transfer.
            orig_param_grad_data.record_stream(torch.cuda.current_stream())
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417

        if param._is_sharded:
            # Accumulate into the gradient shard.
            if getattr(param, "_saved_grad_shard", None) is None:
                param._saved_grad_shard = reduced_grad.data
            else:
                assert (
                    param._saved_grad_shard.shape == reduced_grad.shape
                ), f"{param._saved_grad_shard.shape} vs {reduced_grad.shape}"
                param._saved_grad_shard.data += reduced_grad.data
            reduced_grad = param._saved_grad_shard.data

        # Optionally move gradients to CPU, typically used if one is running the optimizer on the CPU. Once the full
        # backwards pass completes, we will set `.grad` to the CPU copy.
1418
        if self.move_grads_to_cpu:
1419
            param._cpu_grad.copy_(reduced_grad.data, non_blocking=True)
1420
            # Don't let this memory get reused until after the transfer.
1421
            reduced_grad.data.record_stream(torch.cuda.current_stream())
1422

1423
1424
    def _queue_wait_for_post_backward(self) -> None:
        """Try to queue a `wait_for_post_backward` callback.
1425

1426
1427
        Only called on root and only queue one callback at the beginning of
        outer most backward.
1428
1429
1430
        """
        assert self._is_root
        if not self._post_backward_callback_queued:
1431
            self.assert_state([TrainingState.IDLE])
1432
1433
1434
            self._post_backward_callback_queued = True
            Variable._execution_engine.queue_callback(self._wait_for_post_backward)

1435
1436
    @torch.no_grad()
    def _wait_for_post_backward(self) -> None:
1437
        """Wait for post-backward to finish. Only called on root instance."""
1438
        assert self._is_root
1439
1440
1441
1442
1443
        # Check if the root module has params and if any of them has
        # the `requires_grad` field set. If `requires_grad=False` for
        # all the params, the post_backward hook will not fire and the
        # state will remain in `TrainingState.BACKWARD_PRE`.
        if any([p.requires_grad for p in self.params]):
1444
1445
1446
1447
            self.assert_state(TrainingState.BACKWARD_POST)
        else:
            self.assert_state(TrainingState.BACKWARD_PRE)

1448
1449
1450
1451
1452
1453
1454
1455
1456
        if self._require_backward_grad_sync:
            # Flush any unreduced buckets in the post_backward stream.
            with torch.cuda.stream(self._streams["post_backward"]):
                assert self._reducer is not None
                self._reducer.flush()
            torch.cuda.current_stream().wait_stream(self._streams["post_backward"])
            if self.move_grads_to_cpu:
                # Wait for the non-blocking GPU -> CPU grad transfers to finish.
                torch.cuda.current_stream().synchronize()
1457
1458
1459
1460
1461
1462
1463

        # A backward pass is done, clean up below.

        # Free reducer buffers.
        if self._reducer is not None:
            self._reducer.teardown()

1464
        def _finalize_parameters(fsdp_module: FullyShardedDataParallel) -> None:
1465
1466
            """Helper used below on all fsdp modules."""
            for p in fsdp_module.params:
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
                if not p.requires_grad:
                    continue
                if hasattr(p, "_shard_bwd_hook"):
                    assert len(p._shard_bwd_hook) == 2, len(p._shard_bwd_hook)
                    p._shard_bwd_hook[1].remove()
                    delattr(p, "_shard_bwd_hook")

                # Leave the gradient accumulation state as-is if not synchronizing this pass. This ensures p.grad
                # remains the unsharded gradient accumulated from prior no-sync passes, and p._saved_grad_shard
                # remains the sharded gradient from the last synchronized pass. This also allows interleaved no-sync and
                # sync passes, if desired.
                if not self._require_backward_grad_sync:
                    continue

                # Parameter and gradient devices must match.
                if hasattr(p, "_cpu_grad"):
                    assert p.device == torch.device("cpu")
                    p.grad = p._cpu_grad
                elif hasattr(p, "_saved_grad_shard"):
                    assert p.device == p._saved_grad_shard.device
                    p.grad = p._saved_grad_shard

                if hasattr(p, "_saved_grad_shard"):
                    delattr(p, "_saved_grad_shard")
1491
1492

        # Update root and nested FSDP's hooks and flags.
1493
1494
        for m in self.modules():  # includes self
            if isinstance(m, FullyShardedDataParallel):
1495
                _finalize_parameters(m)
1496
                m._pre_backward_hook_has_run = False
1497
                if any(p.requires_grad for p in m.parameters()):
1498
1499
1500
1501
1502
                    # Check if the module has params and if any of them has
                    # the `requires_grad` field set. If `requires_grad=False` for
                    # all the params, the post_backward hook will not fire and the
                    # state will remain in `TrainingState.BACKWARD_PRE`.
                    if any([p.requires_grad for p in m.params]):
1503
1504
                        m.assert_state(TrainingState.BACKWARD_POST)
                    else:
1505
                        m.assert_state(TrainingState.BACKWARD_PRE)
1506
                else:
1507
1508
1509
1510
1511
1512
1513
                    # When `m` and its children has no params or has params but
                    # none with `requires_grad==True`, there are two cases:
                    # 1. output tensors are `requires_grad==True`. In this case,
                    # pre-backward hook is still registered, so it is in BACKWARD_PRE state.
                    # 2. output tensors are `requires_grad==False`. In this case,
                    # pre-backward hook is not registered, so it is in IDLE state.
                    m.assert_state([TrainingState.BACKWARD_PRE, TrainingState.IDLE])
1514
                m.training_state = TrainingState.IDLE
1515

1516
1517
1518
1519
                if m._is_root:
                    # reset this flag for cases like "one forward pass + multiple backward passes"
                    self._post_backward_callback_queued = False

1520
    @torch.no_grad()
1521
    def _rebuild_full_params(self, force_full_precision: bool = False) -> Optional[List[Tuple[torch.Tensor, bool]]]:
1522
1523
1524
        """
        Gather all shards of params.

1525
1526
1527
        Note, this is idempotent if full params are already gathered. Callers
        assume the idempotency. So please keep it that way.

1528
        Args:
1529
1530
            force_full_precision (bool, Optional): by default params will be gathered
                in ``compute_dtype`` (e.g., FP16), unless *force_full_precision* is
1531
                ``True``, in which case they will be gathered in full precision
1532
1533
                (e.g., FP32), possibly in fresh storage. The parameter that's being
                rebuilt will end up in full precision as well.
1534
1535

        Returns:
1536
            A list of tuples, where the first element is the full-sized param
1537
            and the second element is a bool indicating if it's safe for the
1538
            caller to free the full-sized param. This will be ``None`` if
1539
            ``force_full_precision=False`` and the full params are already gathered.
1540
1541
        """
        output_tensors: List[Tuple[torch.Tensor, bool]] = []
1542
1543

        def update_p_data(custom_output_tensor: Optional[torch.Tensor] = None) -> None:
1544
1545
1546
1547
1548
1549
1550
            """
            Helper function to update p.data pointer.

            Args:
                custom_output_tensor (torch.Tensor, Optional): if not None, this
                tensor contains the data we just gathered.
            """
1551
1552
1553
1554
1555
            if custom_output_tensor is not None:
                assert p._is_sharded
                p.data = custom_output_tensor
                output_tensors.append((p.data, True))
            elif not p._is_sharded:
1556
                if self.mixed_precision and not force_full_precision:
1557
                    assert p._fp16_shard is not None
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
                    p.data = p._fp16_shard
                    output_tensors.append((p.data, True))
                else:
                    # Here p.data == p._fp32_shard, so it's not safe to free.
                    output_tensors.append((p.data, False))
            else:
                p.data = p._full_param_padded
                output_tensors.append((p.data, True))
            # Trim any padding and reshape to match original size.
            p.data = p.data[: p._orig_size.numel()].view(p._orig_size)

        # Early exit if we already have full params and don't need full precision.
1570
        if self.has_full_params and not force_full_precision:
1571
1572
1573
1574
1575
1576
            for p in self.params:
                update_p_data()
            return output_tensors

        self.has_full_params = True

1577
        with torch.cuda.stream(self._streams["all_gather"]):
1578
            if self.mixed_precision and not force_full_precision:
1579
1580
1581
                self._cast_fp32_param_shards_to_fp16()

            for p in self.params:
1582
                if not p._is_sharded:  # e.g., when world_size == 1
1583
                    update_p_data()
1584
                else:
1585
                    # If self.move_params_to_cpu and force_full_precision, we need to cast
1586
                    # the FP32 CPU param to CUDA for the all-gather.
1587
                    p_data = p.data.to(p._full_param_padded.device, non_blocking=True)
1588
1589
1590

                    p_size = p._full_param_padded.size()
                    assert p_size.numel() % self.world_size == 0
1591
1592
1593
1594
1595
                    if self.mixed_precision and force_full_precision:
                        # Allocate fresh tensor in full precision since we are in
                        # mixed precision and full precision rebuild is asked.
                        output_tensor = p_data.new_zeros(p_size)
                    else:
1596
1597
1598
1599
                        if p._full_param_padded.storage().size() != p_size.numel():
                            # Allocate based on full size from all shards.
                            alloc_storage_(p._full_param_padded, size=p_size)
                        output_tensor = p._full_param_padded
1600

1601
                    # Fill output_tensor with (p.data for each shard in self.world_size)
1602
1603
                    if hasattr(dist, "_all_gather_base"):
                        # New version of PyTorch has all_gather_base, which is faster than chunk and then all_gather.
1604
                        dist._all_gather_base(output_tensor, p_data, group=self.process_group)
1605
1606
1607
                    else:
                        chunks = list(output_tensor.chunk(self.world_size))
                        dist.all_gather(chunks, p_data, group=self.process_group)
1608

1609
1610
                    # Set p.data = output_tensor (with padding trimmed)
                    update_p_data(output_tensor)
1611

1612
                    if self.mixed_precision and not force_full_precision:
1613
                        self._free_fp16_param_shard([p])
1614
        torch.cuda.current_stream().wait_stream(self._streams["all_gather"])
1615
        return output_tensors
1616
1617
1618

    @torch.no_grad()
    def _use_full_params(self) -> None:
1619
1620
        """
        Switch p.data pointers to use the full params.
1621

1622
        Note: this assumes full params are already gathered.
1623
1624
1625

        Note: this might be called after full_params is already in used. So please
              make sure it is idempotent in that case.
1626
        """
1627
        assert self.has_full_params
1628
1629
1630
        for p in self.params:
            if not p._is_sharded:
                if self.mixed_precision:
1631
                    assert p._fp16_shard is not None
1632
1633
1634
1635
1636
1637
1638
1639
                    assert p._fp16_shard.storage().size() != 0
                    p.data = p._fp16_shard
            else:
                assert p._full_param_padded.storage().size() != 0
                p.data = p._full_param_padded[: p._orig_size.numel()].view(p._orig_size)

    @torch.no_grad()
    def _prep_grads_for_backward(self) -> None:
1640
1641
1642
        """ Make sure p.grad is correctly prepared for the backward with
            right shape, device, accumulated values, etc.
        """
1643
        for p in self.params:
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
            if p.grad is not None:
                if p.grad.device != p.data.device:
                    p.grad = None
                elif p.grad.size() == p._orig_size:
                    # This is gradient accumulation with no_sync context.
                    pass
                elif p.grad.size() == p._fp32_shard.shape:
                    # This is gradient accumulation without no_sync context.
                    # We save the grad shard and set p.grad to None for this backward pass.
                    # We will accumulate after this pass's grad is generated and reduced and
                    # sharded.
                    p._saved_grad_shard = p.grad.data
                    p.grad = None
                else:
                    raise AssertionError(f"unexpected grad shape: {p.grad.size()}")
1659
1660
1661
1662
1663
1664

    @torch.no_grad()
    def _free_full_params(self, params: Optional[List[Parameter]] = None) -> None:
        """Free up storage for full parameters."""
        if params is None:
            params = self.params
1665
        self.has_full_params = False
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
        current_stream = torch.cuda.current_stream()
        for p in params:
            if not p._is_sharded:  # e.g., world_size == 1
                if self.mixed_precision:
                    self._free_fp16_param_shard([p])
                continue
            # Don't let PyTorch reuse this memory until all work in the current
            # stream is complete.
            p._full_param_padded.record_stream(current_stream)
            # There may be external references to the Tensor Storage that we
            # can't modify, such as references that are created by
            # ctx.save_for_backward in the forward pass. Thus when we
            # unshard parameters, we should reuse the original Tensor
            # Storage object and unshard it in-place. For now, just resize
            # the Storage to 0 to save memory.
            free_storage_(p._full_param_padded)
1682

1683
1684
1685
1686
    def local_metadata_dict(self) -> Dict[str, Any]:
        """
        Get the information needed to reconstruct the model from shards offline.

1687
1688
1689
        See the `consolidate_shard_weights` method below.
        """
        param_metadata = []
1690
        for path, m in self.named_modules():
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
            if isinstance(m, FullyShardedDataParallel):
                metadata: Dict[str, Any] = {}
                metadata["fsdp_path"] = _clean_path(path)
                metadata["params"] = {}

                metadata["no_broadcast_optim_state"] = m.no_broadcast_optim_state
                shared_param_info = []
                for (mpath_dst, mpath_src, _, src_name, _, dst_name) in m._shared_param_infos:
                    src_param_path = _clean_path(mpath_src + "." + src_name if mpath_src else src_name)
                    dst_param_path = _clean_path(mpath_dst + "." + dst_name if mpath_dst else dst_name)
                    shared_param_info.append((src_param_path, dst_param_path))
                metadata["shared_param_info"] = shared_param_info

                for i, p in enumerate(m.params):
                    if i < m._num_flatten_params:
                        backing_param_name = m.module.flat_param_names[i]
                        names, shapes, numels = m.module.metadata(i)
                    else:
                        assert len(m._param_name_groups[i]) == 1
                        backing_param_name = m._param_name_groups[i][0]
                        names = [backing_param_name]
                        shapes = [p._orig_size]
                        numels = [p._orig_size.numel()]
                    backing_param_name = _clean_path(backing_param_name)
                    metadata["params"][backing_param_name] = {
                        "names": [_clean_path(n) for n in names],  # A list of str.
                        "shapes": shapes,  # A list of torch.Size.
                        "numels": numels,  # A list of int.
                        "padding": m.numel_padded_per_param[i],  # An int for padding added to the backing parameter.
1720
                    }
1721
                param_metadata.append(metadata)
1722
1723

        buffer_names = [_clean_path(buffer_name) for buffer_name, _ in self.named_buffers(recurse=True)]
1724
        return dict(param_metadata=param_metadata, buffer_names=buffer_names)
1725
1726
1727
1728
1729
1730

    @staticmethod
    def consolidate_shard_weights(
        shard_weights: List[Dict[str, torch.Tensor]],
        shard_metadata: List[Dict[str, Any]],
        with_module_buffers: bool = True,
1731
        strict: bool = True,
1732
1733
1734
    ) -> Dict[str, torch.Tensor]:
        """
        Given a list of weights and meta data associated to N shards, reconstruct
1735
        the weights of an equivalent consolidated (non-sharded) state dict.
1736
1737
1738
1739
1740
1741

        Module parameters are consolidated using the shard metadata.

        Module buffers are taken from shard 0: this assumes that module buffers
        are either synchronized or that the shard 0 value is valid for all shards.
        If this behavior is not correct for your module (for instance if buffers
1742
        needs to be all-reduced instead), you can disable it with `with_module_buffers=False`.
1743

1744
        This method is used to re-assemble checkpoints of shards without
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
        having to instantiate FSDP wrappers with the world size (i.e. large
        number of GPUs) originally used to save the shards.

        Args:
            shard_weights (List[Dict[str, torch.Tensor]]):
                List of dictionaries that contains sharded weights from
                each rank.
            shard_metadata (List[Dict[str, Any]]):
                List of dictionaries that contains metadata from each shard.
                See `local_metadata_dict` above.
            with_module_buffers (bool):
                If shard 0's buffer should be returned in the consolidated
                weight dict.
                Default: True.
            strict (bool):
                allow incomplete shard weights. if True, every key in the metadata must be present in the weights.

1762
1763
        """
        if len(shard_weights) != len(shard_metadata) or not len(shard_weights):
1764
            raise ValueError("Require metadata for each shard and non-empty shards")
1765
1766
1767
1768

        consolidated_weights = {}
        original_world_size = len(shard_weights)

1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
        # For every FSDP instance.
        for fsdp_obj_idx, metadata in enumerate(shard_metadata[0]["param_metadata"]):
            fsdp_path = metadata["fsdp_path"]
            params = metadata["params"]
            # For every this-FSDP-owned param, flattened or not.
            for backing_param_name, v in params.items():
                in_state_dict_key = ".".join([fsdp_path, backing_param_name]) if fsdp_path else backing_param_name
                # Get full param back with pad removed.
                if in_state_dict_key not in shard_weights[0] and (not strict):
                    continue
1779
1780
                shards = []
                for rank in range(original_world_size):
1781
1782
                    shard = shard_weights[rank][in_state_dict_key]
                    pad = shard_metadata[rank]["param_metadata"][fsdp_obj_idx]["params"][backing_param_name]["padding"]
1783
                    shards.append(_unpad(shard, pad))
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
                    if metadata["no_broadcast_optim_state"]:
                        break
                full_param = torch.cat(shards, dim=0)
                # (Potentially), split the full param and create original params.
                names, shapes, numels, _ = v.values()
                assert sum(numels) == full_param.size(0)
                for n, t, s in zip(names, full_param.split(numels), shapes):
                    out_state_dict_key = ".".join([fsdp_path, n]) if fsdp_path else n
                    consolidated_weights[out_state_dict_key] = t.view(s)

        # copy shared parameters
        for src_path, dest_path in metadata["shared_param_info"]:
            consolidated_weights[dest_path] = consolidated_weights[src_path]
1797
1798
1799
1800

        # Deal with the buffers, which are not parameters and are not sharded by FSDP
        # and therefore are replicated among the different shards.
        # We take the values of the first shard (this assumes that there is some form
1801
        # of synchronization between shards or that all shards buffers are equivalent).
1802
1803
        if with_module_buffers:
            for buffer_name in shard_metadata[0]["buffer_names"]:
1804
1805
                if buffer_name not in shard_weights[0] and (not strict):
                    continue
1806
1807
1808
1809
                consolidated_weights[buffer_name] = shard_weights[0][buffer_name]

        return consolidated_weights

1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
    @torch.no_grad()
    def _use_fp32_param_shard(self, params: Optional[List[Parameter]] = None) -> None:
        """Use FP32 shard for a list of params."""
        if params is None:
            params = self.params
        for p in params:
            p.data = p._fp32_shard

    @torch.no_grad()
    def _cast_fp32_param_shards_to_fp16(self, params: Optional[List[Parameter]] = None) -> None:
        """Cast FP32 param shard to FP16 for a list of params."""
        if params is None:
            params = self.params
        with torch.cuda.stream(self._streams["fp32_to_fp16"]):
            for p in params:
                assert p._fp16_shard is not None
                alloc_storage_(p._fp16_shard, size=p._fp32_shard.size())
                p._fp16_shard.copy_(
                    # If cpu_offload is True, this will be non-blocking because
                    # _fp32_shard is pinned, otherwise it's a no-op.
                    p._fp32_shard.to(p._fp16_shard.device, non_blocking=True)
                )
                p.data = p._fp16_shard
        torch.cuda.current_stream().wait_stream(self._streams["fp32_to_fp16"])

    @torch.no_grad()
    def _free_fp16_param_shard(self, params: Optional[List[Parameter]] = None) -> None:
        """Free storage for FP16 shards for a list of params."""
        if params is None:
            params = self.params
        current_stream = torch.cuda.current_stream()
        for p in params:
            if p._fp16_shard is not None:
1843
                # _fp16_shard is allocated in "fp32_to_fp16" stream, so we can't
1844
1845
1846
1847
                # free it until the work in the current stream completes.
                p._fp16_shard.record_stream(current_stream)
                free_storage_(p._fp16_shard)

1848
    def assert_state(self, state: Union[TrainingState, List[TrainingState]]) -> None:
1849
        """Assert we are in the given state."""
1850
1851
1852
1853
1854
1855
1856
1857
1858
        # Since assert can be turned off and this error checking
        # is really important, we use explicit error checking
        # and raise a ValueError if needed.
        if isinstance(state, TrainingState):
            state = [state]
        if self.training_state not in state:
            msg = f"expected to be in states {state} but current state " f"is {self.training_state}"
            # In case we are failing in the context of autograd hook, asserting
            # may not generate useful msg. So, let's print it to be sure.
Min Xu's avatar
Min Xu committed
1859
            if self.rank == 0:
1860
1861
                print(f"Asserting FSDP instance is: {self}")
                print(f"ERROR: {msg}")
Min Xu's avatar
Min Xu committed
1862
                traceback.print_stack()
1863
            raise ValueError(msg)
1864

1865
    def _broadcast_pad_info_to_r0(self) -> List[List[List[int]]]:
1866
        """Collect [x.numel_padded_per_param for x in self._fsdp_instances] from each rank."""
1867
        world_pad_info: List[List[List[int]]] = []  # this will contain values from the whole world.
1868
        my_pad_info: List[List[int]] = [cast(List[int], m.numel_padded_per_param) for m in self._fsdp_instances]
1869
1870
        for rank in range(self.world_size):
            if rank == self.rank:
1871
                pad_info = my_pad_info
1872
            else:
1873
1874
                pad_info = [[0]] * len(my_pad_info)
            dist.broadcast_object_list(pad_info, src=rank, group=self.process_group)
1875
            if self.rank == 0:
1876
                world_pad_info.append(pad_info)
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
        return world_pad_info

    def _gather_optim_state(
        self, sd_state: Dict[int, Dict[str, Any]]
    ) -> Tuple[Dict[int, Dict[str, List]], Dict[int, Dict[str, List]]]:
        """For each value in state[i], if the value is a tensor, collect it from the world. Else use rank 0's entry."""
        gathered_state: Dict[int, Dict[str, List[Any]]] = {}
        singleton_state: Dict[int, Dict[str, List[Any]]] = {}  # Dimensionless tensor
        for k, v in sd_state.items():
            gathered_state[k] = {}
            singleton_state[k] = {}
            desired_buffer_size = self._fsdp_instances[k].flat_param._full_param_padded.size()  # type: ignore
            buffer = None  # for sharded tensors
            singleton_buffer = None  # for singleton tensors
            for buffer_name, t in v.items():
1892
1893
1894
                if torch.is_tensor(t):
                    t = t.to(self.compute_device)

1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
                if ou.is_singleton_tensor(t):
                    if singleton_buffer is None:
                        singleton_buffer = list(t.new_zeros(self.world_size).chunk(self.world_size))
                    dist.all_gather(singleton_buffer, t, group=self.process_group)
                    if self.rank == 0:
                        singleton_state[k][buffer_name] = [x.cpu().squeeze() for x in singleton_buffer]
                        assert ou.is_singleton_tensor(singleton_state[k][buffer_name][0])
                elif torch.is_tensor(t):
                    if buffer is None:
                        buffer = list(t.new_zeros(*desired_buffer_size).chunk(self.world_size))
                    dist.all_gather(buffer, t, group=self.process_group)
                    if self.rank == 0:
                        gathered_state[k][buffer_name] = [x.cpu() for x in buffer]
                elif self.rank == 0:  # Add non tensor state
                    gathered_state[k][buffer_name] = [t]

        return gathered_state, singleton_state

    def gather_full_optim_state_dict(self, optim: torch.optim.Optimizer, **ignored: Dict) -> Optional[Dict[str, Any]]:
1914
1915
1916
1917
        """Return the last known global optimizer state. The returned state is compatible with Pytorch, in that the
        sharded properties are not exposed. Multiple parameter groups are not yet supported.

        This should be called only on the root FSDP instance.
1918
        Nested FSDP instances are supported as long as they have the same world_size as the parent or world_size=1.
1919
1920

        Args:
1921
1922
            optim (Optimizer): an optimizer instance for this FSDP rank. Its state_dict is
                        used in the consolidation. However, its state is not modified.
1923
1924

        Returns:
1925
1926

            * A dict with four entries (On rank zero, other workers return ``None``)
1927
1928
                * state - a dict holding gathered optimization state, 1 entry per unflat parameter
                * param_groups - a dict containing the 1 parameter group
1929
1930
                * param_id_map - global (unflat) to local (flat) id mapping
                * uncollected_local_ids - keys in the state dict that were not broadcast
1931
1932
1933
1934

        """
        if not self.flatten_parameters:
            raise NotImplementedError("optim state dict requires flatten_parameters=True")
1935
1936
1937
1938
1939
1940
1941
1942
1943

        self._lazy_init()
        sd = self._remove_uncollectable_params_from_optim_state_dict(optim.state_dict())
        assert set(sd.keys()) == {"param_groups", "state"}, f'{set(sd.keys())} != {"param_groups", "state"}'
        assert len(sd["param_groups"]) == 1, "Param groups are not supported"
        # We use all_gather to consolidate OSD['state'] and broadcast to consolidate the other keys (like param_groups)
        state, singleton_state = self._gather_optim_state(sd.pop("state"))
        pad_info = self._broadcast_pad_info_to_r0()
        if self.rank != 0:
1944
1945
            return None
        # Unify the shard states by concatenating tensors and unflattening params
1946
        new_state_dict = ou.build_unflat_state_dict(
1947
            self._fsdp_instances, pad_info, state, singleton_state, self.uncollected_opt_state, sd["param_groups"]
1948
1949
1950
        )
        self.uncollected_opt_state = {}
        assert "uncollected_local_ids" in new_state_dict
1951
1952
1953
1954
1955
1956
1957
        return new_state_dict

    @property
    def _fsdp_instances(self) -> List[nn.Module]:
        """Returns all fsdp modules in self.modules() including self."""
        return [m for m in self.modules() if isinstance(m, FullyShardedDataParallel)]

1958
1959
1960
1961
    def _remove_uncollectable_params_from_optim_state_dict(self, osd: Dict) -> Dict:
        uncollected_ids = [i for i, m in enumerate(self._fsdp_instances) if m.no_broadcast_optim_state]
        new_dct = {"state": {k: v for k, v in osd["state"].items() if k not in uncollected_ids}}
        if self.rank == 0:
1962
1963
1964
1965
1966
1967
            # Save placeholders for uncollected opt state to keep the same unflat OSD format, and move them to CPU.
            self.uncollected_opt_state = {
                k: recursive_copy_to_device(v, non_blocking=False, device=torch.device("cpu"))
                for k, v in osd["state"].items()
                if k in uncollected_ids
            }
1968
1969
1970
1971
1972

        pg = copy.deepcopy(osd["param_groups"])
        new_dct["param_groups"] = pg
        return new_dct

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
    def get_shard_from_optim_state_dict(self, full_optim_state_dict: Dict[str, Any]) -> Dict[str, Any]:
        """Get the portion of the optimizer state dict associated with the shard

        This can be used to get the right sharded optimizer state to be loaded
        into the sharded optimizer for this FSDP rank.

        Args:
            full_optim_state_dict (dict): consolidated optimizer state returned by ``gather_full_optim_state``, or loaded from a checkpoint.

        Returns:
            (dict): a shard of the optimizer state.
        """
        # Assert nesting is the same as it was at save time
        instance_list = self._fsdp_instances
        ou.check_param_counts_before_sharding(full_optim_state_dict, len(instance_list))
1988
        ids_not_to_shard = copy.deepcopy(full_optim_state_dict["uncollected_local_ids"])
1989
1990
        if self.flatten_parameters:
            full_optim_state_dict = ou.flatten_optim_state_dict(full_optim_state_dict)
1991
1992
1993
1994
            assert len(full_optim_state_dict["state"]) in (
                0,
                len(instance_list),
            ), f'{len(full_optim_state_dict["state"])}, {len(instance_list)}'
1995
1996
1997
1998

        # get the portion of dict associated with the shard, in place
        for id, s in full_optim_state_dict["state"].items():
            for k, v in s.items():
1999
                if torch.is_tensor(v) and id not in ids_not_to_shard:
2000
                    v_shard, _ = self._get_shard(v)
2001
2002
2003
2004
                elif isinstance(v, list) and ou.is_singleton_tensor(v[0]):
                    # if we are resuming on larger world size, take first entry
                    v_shard = v[0] if self.rank >= len(v) else v[self.rank]
                    assert ou.is_singleton_tensor(v_shard)
2005
                else:
2006
                    v_shard = v  # don't shard entries that are not tensors
2007
2008
2009
2010
                full_optim_state_dict["state"][id][k] = v_shard

        return full_optim_state_dict

2011
    def _print_r0(self, msg: str, restart: bool = False) -> None:
2012
        """Debugging utility to print memory usage stats nicely on rank 0"""
2013
2014
        if restart:
            self._tstart = time.time()
2015
2016
        if self.rank == 0:
            gb_denom = 1024 ** 3
2017
            logging.info(
2018
2019
2020
                f"{msg} cur={torch.cuda.memory_allocated()/gb_denom: .4f} GB, max={torch.cuda.max_memory_allocated()/gb_denom: .4f} GB, t={time.time()-self._tstart: .1f}"
            )

2021
2022
2023
2024
2025
    # Note: This property will be deprecated in an upcoming release in favor of `move_params_to_cpu`.
    @property
    def cpu_offload(self) -> bool:
        return self.move_params_to_cpu

2026

2027
2028
def _get_default_cuda_device(module: nn.Module) -> torch.device:
    """Try to infer CUDA device from module parameters."""
2029
2030
2031
2032
2033
2034
2035
2036
    try:
        compute_device = next(module.parameters()).device
        if compute_device.type == "cuda":
            return compute_device
    except StopIteration:
        pass
    # Fall back to current CUDA device
    return torch.device("cuda")
2037
2038


2039
def cast_floats_to_right_precision(to_fp16: bool, no_grad: bool, *args: Any, **kwargs: Any) -> Tuple[Any, Any]:
2040
    """
2041
    Cast floating point Tensors in *args or **kwargs to FP16 or FP32 if they are not.
2042
    We also retain the requires_grad flag so that casting doesn't affect the autograd graph.
2043
    """
2044

2045
    def fn_fp16(x: torch.Tensor) -> torch.Tensor:
2046
        if x.dtype is torch.float32:
2047
2048
2049
2050
            y = x.half()
            if x.is_leaf:
                y.requires_grad = x.requires_grad
            return y
2051
2052
        return x

2053
2054
    def fn_fp32(x: torch.Tensor) -> torch.Tensor:
        if x.dtype is torch.float16:
2055
2056
2057
2058
            y = x.float()
            if x.is_leaf:
                y.requires_grad = x.requires_grad
            return y
2059
2060
2061
2062
2063
2064
        return x

    fn = fn_fp16 if to_fp16 else fn_fp32
    context = torch.no_grad() if no_grad else contextlib.suppress()
    with context:  # type: ignore
        return apply_to_tensors(fn, args), apply_to_tensors(fn, kwargs)
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082


def free_storage_(data: torch.Tensor) -> None:
    """Free underlying storage of a Tensor."""
    if data.storage().size() > 0:
        # Since we're modifying the Tensor's Storage directly, make sure the Tensor
        # is the sole occupant of the Storage.
        assert data.storage_offset() == 0
        data.storage().resize_(0)


@torch.no_grad()
def alloc_storage_(data: torch.Tensor, size: torch.Size) -> None:
    """Allocate storage for a tensor."""
    if data.storage().size() == size.numel():  # no need to reallocate
        return
    assert data.storage().size() == 0
    data.storage().resize_(size.numel())
2083
2084
2085


def _post_state_dict_hook(
2086
    module: FullyShardedDataParallel, state_dict: "OrderedDict[str, torch.Tensor]", prefix: str, *args: Any
2087
) -> "OrderedDict[str, torch.Tensor]":
2088
2089
2090
2091
    # Assuming we are in a ``summon_full_params()`` context, we need to clone
    # each tensor so that it does not get freed (in-place) when the context
    # exits. At the same time, this hook can be called multiple times
    # recursively, so we need to make sure that we only clone each tensor at
2092
    # most once. Thus we add an attribute on the tensor called "_has_been_cloned"
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
    # which keeps track of tensors that are no longer at risk of being freed.
    for key in state_dict.keys():
        if not key.startswith(prefix) or getattr(state_dict[key], "_has_been_cloned", False):
            continue
        if state_dict[key].device.type != module.state_dict_device.type:
            state_dict[key] = state_dict[key].to(device=module.state_dict_device)
            state_dict[key]._has_been_cloned = True
        elif module.training_state == TrainingState.SUMMON_FULL_PARAMS:
            # We copy the state_dict since full param will be freed after we
            # exit the ``summon_full_params()`` context.
2103
            state_dict[key] = state_dict[key].clone()
2104
            state_dict[key]._has_been_cloned = True
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114

    # Remove "_fsdp_wrapped_module." prefix
    replace_by_prefix_(state_dict, prefix + "_fsdp_wrapped_module.", prefix)
    return state_dict


def _pre_load_state_dict_hook(
    state_dict: Union[Dict[str, torch.Tensor], "OrderedDict[str, torch.Tensor]"], prefix: str, *args: Any
) -> None:
    replace_by_prefix_(state_dict, prefix, prefix + "_fsdp_wrapped_module.")
Min Xu's avatar
Min Xu committed
2115
2116


2117
def _clean_path(path: str) -> str:
2118
    """ Remove FSDP related wrapper modules from a given state dict key str path. """
2119
2120
2121
2122
2123
2124
2125
2126
2127
    return ".".join([split for split in path.split(".") if split not in {"_fsdp_wrapped_module", "_fpw_module"}])


def _unpad(shard: torch.Tensor, pad: int) -> torch.Tensor:
    if pad > 0:
        shard = shard[:-pad]
    return shard


Min Xu's avatar
Min Xu committed
2128
2129
2130
2131
2132
########################################################################################
# Below are APIs used together with FSDP, but not directly part of FSDP.
########################################################################################


2133
2134
2135
2136
2137
def auto_wrap_bn(
    module: nn.Module,
    single_rank_pg: bool = False,
    process_group: Optional[ProcessGroup] = None,
    fsdp_config: Optional[Dict[str, Any]] = None,
2138
2139
    wrap_it: bool = True,
    assert_on_collision: bool = True,
2140
) -> nn.Module:
Min Xu's avatar
Min Xu committed
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
    """
    Auto wrap all BatchNorm (BN) instances with a safer FSDP, esp. when convert
    to sync BN is used and the outer FSDP is flattening.

    We put BN in is own full precision, unflatten, single GPU group FSDP.  Note, SyncBNs still have
    a group size == world_size. The input and output for BN are still FP16 in mixed precision mode.
    See ``keep_batchnorm_fp32`` here: https://nvidia.github.io/apex/amp.html

    This needs to be done at each rank, like models being wrapped by FSDP at each rank.

    Args:
        module (nn.Module):
            The model (or part of the model) in which BN to be pre-wrapped.
2154
2155
2156
        single_rank_pg (bool):
            If true, put BNs in a single-rank process group. Default False.
            This might be needed for Apex sync BN support. Still under construction.
2157
2158
2159
2160
        process_group (ProcessGroup):
            Optional process group to be used.
        fsdp_config (Dict):
            Optional fsdp_config to be used.
2161
2162
2163
2164
2165
2166
        wrap_it (bool):
            Whether or not wrap the module after setting the config.
            Default: True
        assert_on_collision (bool):
            Whether or not assert if a wrapper_config already exists on the module.
            Default: True
Min Xu's avatar
Min Xu committed
2167
2168
2169
2170

    Returns:
        Processed module, where BNs are wrapped with a special FSDP instance.
    """
2171
    # Prepare a fsdp_config dict for BNs.
2172
    pg = process_group
2173
2174
2175
    if single_rank_pg:
        # No sharding with this single member group.
        my_rank = dist.get_rank()
2176
        pg = get_process_group_cached(ranks=[my_rank])
2177

2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
    if fsdp_config is None:
        fsdp_config = {
            "process_group": pg,
            "mixed_precision": False,  # Keep the weights in FP32.
            "flatten_parameters": False,  # Do not flatten.
            # Reshard==False is good for performance. When FSDP(checkpoint(FSDP(bn))) is used, this
            # **must** be False because BN's FSDP wrapper's pre-backward callback isn't called
            # within the checkpoint's outer backward when multiple forward passes are used.
            "reshard_after_forward": False,
            # No bucketing or small bucketing should be enough for BNs.
            "bucket_cap_mb": 0,
            # Setting this for SyncBatchNorm. This may have a performance impact. If
            # SyncBatchNorm is used, this can be enabled by passing in the `fsdp_config` argument.
            "force_input_to_fp32": False,
        }
Min Xu's avatar
Min Xu committed
2193

2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
    # Assign the config dict to BNs.
    for m in module.modules():
        if isinstance(m, torch.nn.modules.batchnorm._BatchNorm):
            if assert_on_collision:
                assert not hasattr(
                    m, "wrapper_config"
                ), "Module shouldn't already have a wrapper_config. Is it tagged already by another policy?"
            m.wrapper_config = fsdp_config

    # Wrap it.
    with (
        enable_wrap(config_auto_wrap_policy, wrapper_cls=FullyShardedDataParallel) if wrap_it else contextlib.suppress()
    ):
Min Xu's avatar
Min Xu committed
2207
        return auto_wrap(module)