test_oss.py 13.4 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

6
7
8
9
# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
10
11
import os

12
import numpy as np
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
13
14
15
16
17
18
19
20
21
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp

import fairscale.optim as optim

skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")

22
23
24
BACKEND = dist.Backend.NCCL if torch.cuda.is_available() else dist.Backend.GLOO  # type: ignore
DEVICE = "cuda" if torch.cuda.is_available() else torch.device("cpu")

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
25
26
27
28

def setup_module(module):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29500"
29
    dist.init_process_group(backend=BACKEND, rank=0, world_size=1)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
30
31
32
33
34


def dist_init(rank, world_size):
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29501"
35
    dist.init_process_group(backend=BACKEND, rank=rank, world_size=world_size)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
36
37
38
39
40
41
42
43


def test_create():
    params = [torch.rand(1)]
    o = optim.OSS(params, lr=0.01)


def test_state_dict():
44
    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
45
46
47
48
49
50
    o = optim.OSS([x], lr=0.1, momentum=0.9)
    x.backward()
    o.step()
    assert x == torch.tensor([0.9], device=DEVICE)
    assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
    o.zero_grad()
51
    o.consolidate_state_dict()  # Sync state dict in between replicas - even if there are none
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
52
    state_dict = o.state_dict()
53

54
55
56
57
    # Check that the state dict is pytorch-compliant key wise
    assert "param_groups" in state_dict.keys()
    assert "state" in state_dict.keys()

58
    # Check that the pulled state is what we expect, and that we have all the expected keys
59
60
61
62
63
    assert state_dict["param_groups"][0]["lr"] == 0.1
    assert state_dict["param_groups"][0]["momentum"] == 0.9
    assert not state_dict["param_groups"][0]["nesterov"]
    assert state_dict["param_groups"][0]["weight_decay"] == 0.0
    assert state_dict["param_groups"][0]["dampening"] == 0.0
64
65

    # Check that the pulled state and the .param_groups attribute are in sync
66
    for k in state_dict["param_groups"][0].keys():
67
        if k != "params":
68
            assert state_dict["param_groups"][0][k] == o.param_groups[0][k]
69
70

    # Check that it's correctly loaded
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
71
72
    o = optim.OSS([x], lr=0.01)
    o.load_state_dict(state_dict)
73
74
    # Check that state is correct and on proper device
    assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.0], device=DEVICE)
75
76
77
78

    # We should now be using a lr of 0.1, both within the optimizer
    # and as exposed by the .param_groups attribute
    assert o.param_groups[0]["lr"] == 0.1
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
79
80
    x.backward()
    o.step()
81
82
    assert x == torch.tensor([0.71], device=DEVICE)
    assert o.optim.state[x]["momentum_buffer"] == torch.tensor([1.9], device=DEVICE)
83

84
85
86
    # Check that the exposed param_groups are on the proper device
    assert o.param_groups[0]["params"][0].device == x.device

87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
def test_lr_scheduler():
    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
    x2 = torch.tensor([1.0], device=DEVICE, requires_grad=True)
    o = optim.OSS([x], lr=0.01)
    o2 = torch.optim.SGD([x2], lr=0.01)
    s = torch.optim.lr_scheduler.StepLR(o, 1)
    s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
    for _ in range(5):
        x.backward()
        o.zero_grad()
        o.step()
        s.step()
        x2.backward()
        o2.zero_grad()
        o2.step()
        s2.step()
        assert x == x2


107
def test_step_with_kwargs():
108
109
110
111
112
    class SGDWithStepKWArg(torch.optim.SGD):
        def step(self, closure=None, kwarg=[]):
            super().step()
            kwarg.append(5)

113
114
115
116
117
118
119
120
121
    kwarg = []
    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
    o = optim.OSS([x], SGDWithStepKWArg, lr=0.1)
    x.backward()
    o.step(0, kwarg=kwarg)
    assert kwarg == [5]
    assert x == torch.tensor([0.9], device=DEVICE)


122
123
124
125
126
127
128
129
130
131
132
133
def test_step_without_closure():
    class SGDWithoutClosure(torch.optim.SGD):
        def step(self):
            return super().step()

    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
    o = optim.OSS([x], SGDWithoutClosure, lr=0.1)
    x.backward()
    o.step()
    assert x == torch.tensor([0.9], device=DEVICE)


134
135
136
137
138
139
140
def test_local_state_dict():
    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
    o = optim.OSS([x], lr=0.1)
    local_state_dict = o.local_state_dict()
    o = optim.OSS([x], lr=0.01)
    o.load_local_state_dict(local_state_dict)
    # We should now be using a lr of 0.1.
141
142
    assert o.optim.param_groups[0]["lr"] == 0.1
    assert o.param_groups[0]["lr"] == 0.1
143
144
145
    x.backward()
    o.step()
    assert x == torch.tensor([0.9], device=DEVICE)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
146
147


148
149
150
151
152
153
154
155
156
157
158
159
160
161
def test_implicit_local_state_dict():
    x = torch.tensor([1.0], device=DEVICE, requires_grad=True)
    o = optim.OSS([x], lr=0.1)
    local_state_dict = o.state_dict()
    o = optim.OSS([x], lr=0.01)
    o.load_state_dict(local_state_dict)
    # We should now be using a lr of 0.1.
    assert o.optim.param_groups[0]["lr"] == 0.1
    assert o.param_groups[0]["lr"] == 0.1
    x.backward()
    o.step()
    assert x == torch.tensor([0.9], device=DEVICE)


Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
162
163
164
165
166
167
168
169
170
171
172
def run_test_add_param_group(rank, world_size):
    dist_init(rank, world_size)
    params = []
    for size in [4, 5, 2, 6, 4]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert len(o.param_groups) == 1
    o.add_param_group({"params": [torch.rand(3, 1)]})
    assert len(o.param_groups) == 2
    # Verify that added group is added to the correct partition making all have 8 elements.
    assert sum([x.numel() for g in o.optim.param_groups for x in g["params"]]) == 8
173
    assert len(o.optim.param_groups) == 2
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219


def test_add_param_group():
    world_size = 3
    mp.spawn(run_test_add_param_group, args=(world_size,), nprocs=world_size, join=True)


def run_test_zero_grad(rank, world_size):
    dist_init(rank, world_size)
    x = torch.rand(1)
    m = torch.nn.Linear(1, 1)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    assert m.weight.grad
    assert m.bias.grad
    o.zero_grad()
    assert not m.weight.grad
    assert not m.bias.grad


def test_zero_grad():
    world_size = 2
    mp.spawn(run_test_zero_grad, args=(world_size,), nprocs=world_size, join=True)


def run_test_step(rank, world_size):
    dist_init(rank, world_size)
    x = torch.tensor([float(rank + 1)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[1.0]])
    m.bias.data = torch.tensor([2.0])
    m.to(rank)
    o = optim.OSS(m.parameters(), lr=0.1)
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size
    o.step()
    assert m.weight == torch.tensor([[0.75]], device=rank)
    assert m.bias == torch.tensor([1.85], device=rank)


@skip_if_no_cuda
def test_step():
220
    world_size = min(2, torch.cuda.device_count())
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
221
222
223
    mp.spawn(run_test_step, args=(world_size,), nprocs=world_size, join=True)


224
def run_test_step_with_closure(rank, world_size, optimizer=None):
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
225
    dist_init(rank, world_size)
226

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
227
228
229
230
231
232
233
234
235
236
237
238
    x_val = rank + 1
    weight = 1.0
    bias = 2.0
    error = 1.0
    target = torch.tensor([x_val * weight + bias + error], device=rank)
    loss_fn = torch.nn.L1Loss()

    x = torch.tensor([float(x_val)], device=rank)
    m = torch.nn.Linear(1, 1)
    m.weight.data = torch.tensor([[weight]])
    m.bias.data = torch.tensor([bias])
    m.to(rank)
239

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
240
    o = optim.OSS(m.parameters(), lr=0.1)
241

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    y = m(x)
    y.backward(x)
    for p in m.parameters():
        dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
        p.grad.data /= world_size

    def closure():
        o.zero_grad()
        output = m(x)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    loss = o.step(closure=closure)

    assert loss == torch.tensor(error, device=rank)
    assert m.weight == torch.tensor([[1.1]], device=rank)
    assert m.bias == torch.tensor([2.1], device=rank)


@skip_if_no_cuda
def test_step_with_closure():
264
    world_size = min(2, torch.cuda.device_count())
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    mp.spawn(run_test_step_with_closure, args=(world_size,), nprocs=world_size, join=True)


def run_test_sharding(rank, world_size):
    dist_init(rank, world_size)
    params = []
    for size in [5, 4, 2, 6, 4, 3]:
        params.append(torch.rand(size, 1))
    o = optim.OSS(params, lr=0.1)
    assert sum([x.numel() for x in o.optim.param_groups[0]["params"]]) == 8


def test_sharding():
    world_size = 3
    mp.spawn(run_test_sharding, args=(world_size,), nprocs=world_size, join=True)
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316


def run_test_collect_shards(rank, world_size, reference_rank):
    dist_init(rank, world_size)
    device = torch.device(rank) if torch.cuda.device_count() > 1 else DEVICE

    # Run a dummy step so that the optimizer state dict exists
    batch, input_width, hidden, target_width = 3, 20, 10, 5
    target = torch.rand((batch, target_width), device=device)
    inputs = torch.rand((batch, input_width), device=device)

    model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width))
    model.to(device)

    loss_fn = torch.nn.L1Loss()
    loss_fn.to(device)

    # With SGD, Momentum is required to get a state to shard
    optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99)

    def closure():
        optimizer.zero_grad()
        output = model(inputs)
        loss = loss_fn(output, target)
        loss.backward()
        return loss

    _ = optimizer.step(closure=closure)

    # Update the optimizer state on the reference rank
    optimizer.consolidate_state_dict(recipient_rank=reference_rank)

    # Fetch the state on the reference rank
    # - check that it has the correct size
    # - load it again
    if rank == reference_rank:
        optimizer_state_dict = optimizer.state_dict()
317
        assert len(optimizer_state_dict["state"]) == world_size
318
319
320
321
322
323
324
325
326
327
328
329
330
    else:
        optimizer_state_dict = {}

    optimizer_state_dict = optim.utils.broadcast_object(
        optimizer_state_dict, src_rank=reference_rank, group=dist.group.WORLD, dist_device=device
    )

    # Load the optimizer state dict
    optimizer.load_state_dict(optimizer_state_dict)


def test_collect_shards():
    world_size = 3
331
332
    if torch.cuda.is_available():
        world_size = min(world_size, torch.cuda.device_count())
333
334
335
336
337
    reference_rank = 0

    mp.spawn(
        run_test_collect_shards, args=(world_size, reference_rank), nprocs=world_size, join=True,
    )
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412


def run_test_multiple_groups(rank, world_size):
    # Only work with the even ranks, to check that the global_rank indexing is properly used
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29501"
    dist.init_process_group(backend="gloo", rank=rank, world_size=world_size)
    sub_group_ranks = [0, 2, 4]
    process_group = torch.distributed.new_group(ranks=sub_group_ranks, backend="gloo")

    # Make sure that all the ranks get different training data
    # So that the sync check in between their models is meaningful
    torch.manual_seed(rank)
    np.random.seed(rank)

    # Standard deep learning setup
    device = "cpu"
    epochs, batch, input_width, hidden, target_width = 5, 3, 20, 10, 5
    loss_fn = torch.nn.L1Loss().to(device)

    def check(optimizer):
        # Just run a couple of epochs, check that the model is properly updated
        for _ in range(epochs):
            target = torch.rand((batch, target_width), device=device)
            inputs = torch.rand((batch, input_width), device=device)

            def closure():
                optimizer.zero_grad()
                output = model(inputs)
                loss = loss_fn(output, target)
                loss /= world_size
                loss.backward()
                dist.all_reduce(loss, group=process_group)  # Not strictly needed for the test below

                return loss

            _ = optimizer.step(closure=closure)

            # Check that all the params are the same on all ranks
            for pg in optimizer.param_groups:
                for p in pg["params"]:
                    receptacle = [p.clone() for _ in sub_group_ranks] if rank == 0 else []
                    dist.gather(p, receptacle, dst=0, group=process_group)
                    if rank == 0:
                        for sync_p in receptacle[1:]:
                            assert torch.all(torch.eq(receptacle[0], sync_p)), "Models differ in between ranks"

    if rank in sub_group_ranks:
        # Model fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(
            model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=2 ** 20
        )
        check(optimizer)

        # Model not-fitting in the broadcast bucket
        model = torch.nn.Sequential(torch.nn.Linear(input_width, hidden), torch.nn.Linear(hidden, target_width)).to(
            device
        )

        # With SGD, Momentum is required to get a state to shard
        optimizer = optim.OSS(model.parameters(), lr=0.1, momentum=0.99, group=process_group, broadcast_buffer_size=0)
        check(optimizer)


def test_multiple_groups():
    world_size = 6

    mp.spawn(
        run_test_multiple_groups, args=(world_size,), nprocs=world_size, join=True,
    )