test_fsdp_memory.py 14.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

""" Test FSDP with GPU memory usage. """

12
import contextlib
13
14
15
16
17
18
19
20
21
22
23

import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
import torch.optim as optim

from fairscale.nn import checkpoint_wrapper
from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP
from fairscale.nn.data_parallel import auto_wrap_bn
24
from fairscale.utils.parallel import get_process_group_cached
25
26
27
28
29
30
31
32
from fairscale.utils.testing import (
    dist_init,
    dump_all_tensors,
    skip_if_single_gpu,
    teardown,
    temp_files_ctx,
    torch_version,
)
33
34


35
def to_fsdp(module, fsdp_config):
36
    return FSDP(module, process_group=get_process_group_cached(), **fsdp_config)
37
38
39
40
41
42
43
44


def get_cur_mem(rank, result, prefix):
    """Collect memory allocated values in a result dict in MB"""
    result[prefix] = round(torch.cuda.memory_allocated() / 1024 / 1024)


class Model(nn.Module):
45
    def __init__(self, hidden_dim):
46
        super().__init__()
47
48
49
50
        # TODO (Min): for both fast and memory efficient conv kernels, we should be using
        #     AMP/fp16 + channel_last input format. Otherwise, cudnn internally does conversion
        #     to channel_last when it is fp16 weights. Leave this knowledge here and perhaps
        #     future test can cover it.
51
52
        self.stem = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3), nn.BatchNorm2d(64), nn.ReLU(inplace=True))
        self.blocks = nn.Sequential(
53
54
            nn.Conv2d(64, hidden_dim, kernel_size=5, padding=2),
            nn.BatchNorm2d(hidden_dim),
55
            nn.ReLU(inplace=True),
56
57
            nn.Conv2d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
            nn.BatchNorm2d(hidden_dim),
58
            nn.ReLU(inplace=True),
59
60
            nn.Conv2d(hidden_dim, hidden_dim, kernel_size=5, padding=2),
            nn.BatchNorm2d(hidden_dim),
61
62
63
64
            nn.ReLU(inplace=True),
            nn.AdaptiveAvgPool2d(output_size=(1, 1)),
            nn.Flatten(),
        )
65
        self.head = nn.Linear(hidden_dim, 10)
66
67
68
69
70

    def forward(self, x):
        return self.head(self.blocks(self.stem(x)))


71
72
def create_model(with_fsdp, with_checkpoint, model_hidden_dim, fsdp_config):
    model = Model(model_hidden_dim)
73
74
75
76
77
    if with_fsdp:
        model.stem = auto_wrap_bn(model.stem, single_rank_pg=False)
        model.blocks = auto_wrap_bn(model.blocks, single_rank_pg=False)
        if with_checkpoint:
            model.blocks = checkpoint_wrapper(model.blocks)
78
79
80
        model.stem = to_fsdp(model.stem, fsdp_config)
        model.blocks = to_fsdp(model.blocks, fsdp_config)
        model.head = to_fsdp(model.head, fsdp_config)
81
82
83
84
85
86
    else:
        if with_checkpoint:
            model.blocks = checkpoint_wrapper(model.blocks)
    return model


87
88
89
def _distributed_worker(
    gpu_id, world_size, with_fsdp, with_checkpoint, filename, filename_rpc, expected, model_hidden_dim, fsdp_config
):
90
91
92
93
94
95
96
97
    torch.cuda.set_device(gpu_id)

    rank = gpu_id
    result = dist_init(rank, world_size, filename, filename_rpc)
    assert result, "Dist init failed"

    torch.manual_seed(0)
    torch.backends.cudnn.deterministic = True
98
99

    # Note that FSDP auto-cast the input in AMP mode. So we don't need to call half() here.
100
101
    batch = torch.randn(size=(2, 3, 224, 224)).cuda()

102
    model = create_model(with_fsdp, with_checkpoint, model_hidden_dim, fsdp_config)
103
104
    model = model.cuda()
    if with_fsdp:
105
        model = to_fsdp(model, fsdp_config)
106
107
108
    else:
        model = DistributedDataParallel(model, device_ids=[gpu_id], bucket_cap_mb=500)

109
110
    # We enable momentum so that after the first iteration, the optimizer state is added
    # to the total memory used.
111
    criterion = nn.MSELoss()
112
    optimizer = optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
113

114
115
116
117
118
119
120
121
122
123
124
    # Set AMP context if needed.
    context = contextlib.suppress()
    if "mixed_precision" in fsdp_config and fsdp_config["mixed_precision"]:
        context = torch.cuda.amp.autocast(enabled=True)

    # We have observed that sometimes after 3rd iteration, 4th one can fail (not on this
    # test but on much bigger scale tests). We run 4 iterations here just in case it happens.
    iterations = 4

    results = {}  # results of memory stats
    for iteration in range(iterations):
125
126
        get_cur_mem(gpu_id, results, f"iter {iteration}: start")

127
128
129
        with context:
            out = model(batch)
            get_cur_mem(gpu_id, results, f"iter {iteration}: after fwd")
130

131
132
133
            out = sum(o.sum() for o in out[0])
            fake_loss = criterion(out, torch.tensor(0.0).cuda())
            get_cur_mem(gpu_id, results, f"iter {iteration}: after loss")
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        fake_loss.backward()
        get_cur_mem(gpu_id, results, f"iter {iteration}: after bwd")

        optimizer.step()
        get_cur_mem(gpu_id, results, f"iter {iteration}: after step")

        # It is important to use `set_to_none` below, not optimizer.zero_grad() to reclaim memory.
        if torch_version() >= (1, 7, 0):
            model.zero_grad(set_to_none=True)
        else:
            for p in model.parameters():
                p.grad = None
        get_cur_mem(gpu_id, results, f"iter {iteration}: done")

149
150
151
152
153
154
155
156
157
158
159
160
161
162
    dump_all_tensors(gpu_id)
    print(results)

    def cmp(results, expected):
        ret = ""
        assert results.keys() == expected.keys(), f"{list(results.keys())} vs. {list(expected.keys())}"
        for k, v in results.items():
            exp = expected[k]
            if abs(exp - v) > 1:  # allow 1MB rounding differences
                ret += f"{k}: got {v}, expected {exp}\n"
        return ret

    output = cmp(results, expected)
    assert not output, output
163
164
165
166
167
168

    teardown()


@skip_if_single_gpu
@pytest.mark.parametrize("ckpt", ["no_ckpt", "ckpt"])
169
@pytest.mark.parametrize("fsdp", ["ddp", "fsdp", "fsdp_amp_default", "fsdp_amp_compute_dtype32"])
170
171
172
173
174
175
176
def test_fsdp_memory(fsdp, ckpt):
    expected = {
        ("ddp", "no_ckpt"): {
            "iter 0: start": 9,
            "iter 0: after fwd": 346,
            "iter 0: after loss": 346,
            "iter 0: after bwd": 14,
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
            "iter 0: after step": 17,
            "iter 0: done": 13,
            "iter 1: start": 13,
            "iter 1: after fwd": 350,
            "iter 1: after loss": 350,
            "iter 1: after bwd": 17,
            "iter 1: after step": 17,
            "iter 1: done": 13,
            "iter 2: start": 13,
            "iter 2: after fwd": 350,
            "iter 2: after loss": 350,
            "iter 2: after bwd": 17,
            "iter 2: after step": 17,
            "iter 2: done": 13,
            "iter 3: start": 13,
            "iter 3: after fwd": 350,
            "iter 3: after loss": 350,
            "iter 3: after bwd": 17,
            "iter 3: after step": 17,
            "iter 3: done": 13,
197
198
199
200
201
        },
        ("fsdp", "no_ckpt"): {
            "iter 0: start": 3,
            "iter 0: after fwd": 340,
            "iter 0: after loss": 340,
202
203
            "iter 0: after bwd": 16,
            "iter 0: after step": 18,
204
205
206
207
            "iter 0: done": 5,
            "iter 1: start": 5,
            "iter 1: after fwd": 342,
            "iter 1: after loss": 342,
208
209
            "iter 1: after bwd": 18,
            "iter 1: after step": 18,
210
211
212
213
            "iter 1: done": 5,
            "iter 2: start": 5,
            "iter 2: after fwd": 342,
            "iter 2: after loss": 342,
214
215
            "iter 2: after bwd": 18,
            "iter 2: after step": 18,
216
217
218
219
            "iter 2: done": 5,
            "iter 3: start": 5,
            "iter 3: after fwd": 342,
            "iter 3: after loss": 342,
220
221
            "iter 3: after bwd": 18,
            "iter 3: after step": 18,
222
223
224
225
226
227
            "iter 3: done": 5,
        },
        ("fsdp_amp_default", "no_ckpt"): {
            "iter 0: start": 28,
            "iter 0: after fwd": 630,
            "iter 0: after loss": 630,
228
229
            "iter 0: after bwd": 67,
            "iter 0: after step": 93,
230
231
232
233
            "iter 0: done": 54,
            "iter 1: start": 54,
            "iter 1: after fwd": 657,
            "iter 1: after loss": 657,
234
235
            "iter 1: after bwd": 93,
            "iter 1: after step": 93,
236
237
238
239
            "iter 1: done": 54,
            "iter 2: start": 54,
            "iter 2: after fwd": 657,
            "iter 2: after loss": 657,
240
241
            "iter 2: after bwd": 93,
            "iter 2: after step": 93,
242
243
244
245
            "iter 2: done": 54,
            "iter 3: start": 54,
            "iter 3: after fwd": 657,
            "iter 3: after loss": 657,
246
247
            "iter 3: after bwd": 93,
            "iter 3: after step": 93,
248
249
250
251
252
253
            "iter 3: done": 54,
        },
        ("fsdp_amp_compute_dtype32", "no_ckpt"): {
            "iter 0: start": 28,
            "iter 0: after fwd": 657,
            "iter 0: after loss": 657,
254
255
            "iter 0: after bwd": 67,
            "iter 0: after step": 93,
256
257
258
259
            "iter 0: done": 54,
            "iter 1: start": 54,
            "iter 1: after fwd": 684,
            "iter 1: after loss": 684,
260
261
            "iter 1: after bwd": 93,
            "iter 1: after step": 93,
262
263
264
265
            "iter 1: done": 54,
            "iter 2: start": 54,
            "iter 2: after fwd": 684,
            "iter 2: after loss": 684,
266
267
            "iter 2: after bwd": 93,
            "iter 2: after step": 93,
268
269
270
271
            "iter 2: done": 54,
            "iter 3: start": 54,
            "iter 3: after fwd": 684,
            "iter 3: after loss": 684,
272
273
            "iter 3: after bwd": 93,
            "iter 3: after step": 93,
274
            "iter 3: done": 54,
275
276
277
278
279
280
        },
        ("ddp", "ckpt"): {
            "iter 0: start": 9,
            "iter 0: after fwd": 57,
            "iter 0: after loss": 57,
            "iter 0: after bwd": 14,
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
            "iter 0: after step": 17,
            "iter 0: done": 13,
            "iter 1: start": 13,
            "iter 1: after fwd": 61,
            "iter 1: after loss": 61,
            "iter 1: after bwd": 17,
            "iter 1: after step": 17,
            "iter 1: done": 13,
            "iter 2: start": 13,
            "iter 2: after fwd": 61,
            "iter 2: after loss": 61,
            "iter 2: after bwd": 17,
            "iter 2: after step": 17,
            "iter 2: done": 13,
            "iter 3: start": 13,
            "iter 3: after fwd": 61,
            "iter 3: after loss": 61,
            "iter 3: after bwd": 17,
            "iter 3: after step": 17,
            "iter 3: done": 13,
301
302
303
304
305
        },
        ("fsdp", "ckpt"): {
            "iter 0: start": 3,
            "iter 0: after fwd": 51,
            "iter 0: after loss": 51,
306
307
            "iter 0: after bwd": 16,
            "iter 0: after step": 18,
308
309
310
311
            "iter 0: done": 5,
            "iter 1: start": 5,
            "iter 1: after fwd": 53,
            "iter 1: after loss": 53,
312
313
            "iter 1: after bwd": 18,
            "iter 1: after step": 18,
314
315
316
317
            "iter 1: done": 5,
            "iter 2: start": 5,
            "iter 2: after fwd": 53,
            "iter 2: after loss": 53,
318
319
            "iter 2: after bwd": 18,
            "iter 2: after step": 18,
320
321
322
323
            "iter 2: done": 5,
            "iter 3: start": 5,
            "iter 3: after fwd": 53,
            "iter 3: after loss": 53,
324
325
            "iter 3: after bwd": 18,
            "iter 3: after step": 18,
326
327
328
329
330
331
            "iter 3: done": 5,
        },
        ("fsdp_amp_default", "ckpt"): {
            "iter 0: start": 28,
            "iter 0: after fwd": 52,
            "iter 0: after loss": 52,
332
333
            "iter 0: after bwd": 67,
            "iter 0: after step": 93,
334
335
336
337
            "iter 0: done": 54,
            "iter 1: start": 54,
            "iter 1: after fwd": 79,
            "iter 1: after loss": 79,
338
339
            "iter 1: after bwd": 93,
            "iter 1: after step": 93,
340
341
342
343
            "iter 1: done": 54,
            "iter 2: start": 54,
            "iter 2: after fwd": 79,
            "iter 2: after loss": 79,
344
345
            "iter 2: after bwd": 93,
            "iter 2: after step": 93,
346
347
348
349
            "iter 2: done": 54,
            "iter 3: start": 54,
            "iter 3: after fwd": 79,
            "iter 3: after loss": 79,
350
351
            "iter 3: after bwd": 93,
            "iter 3: after step": 93,
352
353
354
355
356
357
            "iter 3: done": 54,
        },
        ("fsdp_amp_compute_dtype32", "ckpt"): {
            "iter 0: start": 28,
            "iter 0: after fwd": 52,
            "iter 0: after loss": 52,
358
359
            "iter 0: after bwd": 67,
            "iter 0: after step": 93,
360
361
362
363
            "iter 0: done": 54,
            "iter 1: start": 54,
            "iter 1: after fwd": 79,
            "iter 1: after loss": 79,
364
365
            "iter 1: after bwd": 93,
            "iter 1: after step": 93,
366
367
368
369
            "iter 1: done": 54,
            "iter 2: start": 54,
            "iter 2: after fwd": 79,
            "iter 2: after loss": 79,
370
371
            "iter 2: after bwd": 93,
            "iter 2: after step": 93,
372
373
374
375
            "iter 2: done": 54,
            "iter 3: start": 54,
            "iter 3: after fwd": 79,
            "iter 3: after loss": 79,
376
377
            "iter 3: after bwd": 93,
            "iter 3: after step": 93,
378
            "iter 3: done": 54,
379
380
        },
    }[(fsdp, ckpt)]
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

    # Compute the FSDP config.
    fsdp_config = {}

    # Set mixed precision.
    if "amp" in fsdp:
        fsdp_config["mixed_precision"] = True

    # When compute_dtype is FP32, make sure we use clear_autocast_cache.
    # Setting fp32_reduce_scatter and verbose for more code coverage.
    if "compute_dtype32" in fsdp:
        fsdp_config["compute_dtype"] = torch.float32
        fsdp_config["fp32_reduce_scatter"] = True
        fsdp_config["clear_autocast_cache"] = True
        fsdp_config["verbose"] = True

    # Using bigger hidden dimension for AMP to increase the model size
    # so that bug in handling params will show up but we don't do that
    # in the base case to keep the test fast.
    #   - hidden_dim 128: model size ~4MB
    #   - hidden_dim 512: model size ~55MB
    #   - hidden_dim 1024: model size ~200MB (seems to be too big for CI tests though)
    model_hidden_dim = 128
    if "amp" in fsdp:
        model_hidden_dim = 512

    # Get the fsdp and checkpoint flags.
    with_fsdp = "fsdp" in fsdp
    with_ckpt = ckpt == "ckpt"

411
412
413
    world_size = 2
    with temp_files_ctx(num=2) as temp_files:
        mp.spawn(
414
415
416
            _distributed_worker,
            (world_size, with_fsdp, with_ckpt, temp_files[0], temp_files[1], expected, model_hidden_dim, fsdp_config),
            nprocs=world_size,
417
        )