test_fsdp_memory.py 8.02 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# pylint: disable=missing-module-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

""" Test FSDP with GPU memory usage. """

import gc

import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
import torch.optim as optim

from fairscale.nn import checkpoint_wrapper
from fairscale.nn.data_parallel import FullyShardedDataParallel as FSDP
from fairscale.nn.data_parallel import auto_wrap_bn
from fairscale.utils.testing import dist_init, skip_if_single_gpu, teardown, temp_files_ctx, torch_version


def get_global_group():
    """
    Singleton pytorch distributed group
    Inspired by https://github.com/pytorch/fairseq
    """
    if dist.is_initialized():
        if not hasattr(get_global_group, "_global_group"):
            get_global_group._global_group = dist.new_group()
        return get_global_group._global_group
    else:
        return None


def to_fsdp(module):
    return FSDP(module, process_group=get_global_group())


def dump_all_tensors(rank):
    """Use this for debugging"""
    if rank != 0:
        return
    for obj in gc.get_objects():
        try:
            # Only need to check parameter type objects if asked.
            ttype = str(type(obj))
            if torch.is_tensor(obj) or (hasattr(obj, "data") and torch.is_tensor(obj.data)):
                print(ttype, obj.shape, obj.dtype, obj.device, id(obj), obj.storage().size())
        except Exception as e:
            pass


def get_cur_mem(rank, result, prefix):
    """Collect memory allocated values in a result dict in MB"""
    result[prefix] = round(torch.cuda.memory_allocated() / 1024 / 1024)


class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.stem = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3), nn.BatchNorm2d(64), nn.ReLU(inplace=True))
        self.blocks = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=5, padding=2),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=5, padding=2),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 128, kernel_size=5, padding=2),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.AdaptiveAvgPool2d(output_size=(1, 1)),
            nn.Flatten(),
        )
        self.head = nn.Linear(128, 10)

    def forward(self, x):
        return self.head(self.blocks(self.stem(x)))


def create_model(with_fsdp, with_checkpoint):
    model = Model()
    if with_fsdp:
        model.stem = auto_wrap_bn(model.stem, single_rank_pg=False)
        model.blocks = auto_wrap_bn(model.blocks, single_rank_pg=False)
        if with_checkpoint:
            model.blocks = checkpoint_wrapper(model.blocks)
        model.stem = to_fsdp(model.stem)
        model.blocks = to_fsdp(model.blocks)
        model.head = to_fsdp(model.head)
    else:
        if with_checkpoint:
            model.blocks = checkpoint_wrapper(model.blocks)
    return model


def _distributed_worker(gpu_id, world_size, with_fsdp, with_checkpoint, filename, filename_rpc, expected):
    torch.cuda.set_device(gpu_id)

    rank = gpu_id
    result = dist_init(rank, world_size, filename, filename_rpc)
    assert result, "Dist init failed"

    torch.manual_seed(0)
    torch.backends.cudnn.deterministic = True
    batch = torch.randn(size=(2, 3, 224, 224)).cuda()

    model = create_model(with_fsdp, with_checkpoint)
    model = model.cuda()
    if with_fsdp:
        model = to_fsdp(model)
    else:
        model = DistributedDataParallel(model, device_ids=[gpu_id], bucket_cap_mb=500)

    criterion = nn.MSELoss()
    optimizer = optim.SGD(model.parameters(), lr=1e-4)

    results = {}
    for iteration in range(3):
        get_cur_mem(gpu_id, results, f"iter {iteration}: start")

        out = model(batch)
        get_cur_mem(gpu_id, results, f"iter {iteration}: after fwd")

        out = sum(o.sum() for o in out[0])
        fake_loss = criterion(out, torch.tensor(0.0).cuda())
        get_cur_mem(gpu_id, results, f"iter {iteration}: after loss")

        fake_loss.backward()
        get_cur_mem(gpu_id, results, f"iter {iteration}: after bwd")

        optimizer.step()
        get_cur_mem(gpu_id, results, f"iter {iteration}: after step")

        # It is important to use `set_to_none` below, not optimizer.zero_grad() to reclaim memory.
        if torch_version() >= (1, 7, 0):
            model.zero_grad(set_to_none=True)
        else:
            for p in model.parameters():
                p.grad = None
        get_cur_mem(gpu_id, results, f"iter {iteration}: done")

    assert results == expected, f"{results} but expected {expected}"

    teardown()


@skip_if_single_gpu
@pytest.mark.parametrize("ckpt", ["no_ckpt", "ckpt"])
@pytest.mark.parametrize("fsdp", ["ddp", "fsdp"])
def test_fsdp_memory(fsdp, ckpt):
    expected = {
        ("ddp", "no_ckpt"): {
            "iter 0: start": 9,
            "iter 0: after fwd": 346,
            "iter 0: after loss": 346,
            "iter 0: after bwd": 14,
            "iter 0: after step": 14,
            "iter 0: done": 9,
            "iter 1: start": 9,
            "iter 1: after fwd": 346,
            "iter 1: after loss": 346,
            "iter 1: after bwd": 14,
            "iter 1: after step": 14,
            "iter 1: done": 9,
            "iter 2: start": 9,
            "iter 2: after fwd": 346,
            "iter 2: after loss": 346,
            "iter 2: after bwd": 14,
            "iter 2: after step": 14,
            "iter 2: done": 9,
        },
        ("fsdp", "no_ckpt"): {
            "iter 0: start": 3,
            "iter 0: after fwd": 340,
            "iter 0: after loss": 340,
            "iter 0: after bwd": 66,
            "iter 0: after step": 66,
            "iter 0: done": 3,
            "iter 1: start": 3,
            "iter 1: after fwd": 340,
            "iter 1: after loss": 340,
            "iter 1: after bwd": 66,
            "iter 1: after step": 66,
            "iter 1: done": 3,
            "iter 2: start": 3,
            "iter 2: after fwd": 340,
            "iter 2: after loss": 340,
            "iter 2: after bwd": 66,
            "iter 2: after step": 66,
            "iter 2: done": 3,
        },
        ("ddp", "ckpt"): {
            "iter 0: start": 9,
            "iter 0: after fwd": 57,
            "iter 0: after loss": 57,
            "iter 0: after bwd": 14,
            "iter 0: after step": 14,
            "iter 0: done": 9,
            "iter 1: start": 9,
            "iter 1: after fwd": 57,
            "iter 1: after loss": 57,
            "iter 1: after bwd": 14,
            "iter 1: after step": 14,
            "iter 1: done": 9,
            "iter 2: start": 9,
            "iter 2: after fwd": 57,
            "iter 2: after loss": 57,
            "iter 2: after bwd": 14,
            "iter 2: after step": 14,
            "iter 2: done": 9,
        },
        ("fsdp", "ckpt"): {
            "iter 0: start": 3,
            "iter 0: after fwd": 51,
            "iter 0: after loss": 51,
            "iter 0: after bwd": 66,
            "iter 0: after step": 66,
            "iter 0: done": 3,
            "iter 1: start": 3,
            "iter 1: after fwd": 51,
            "iter 1: after loss": 51,
            "iter 1: after bwd": 66,
            "iter 1: after step": 66,
            "iter 1: done": 3,
            "iter 2: start": 3,
            "iter 2: after fwd": 51,
            "iter 2: after loss": 51,
            "iter 2: after bwd": 66,
            "iter 2: after step": 66,
            "iter 2: done": 3,
        },
    }[(fsdp, ckpt)]
    fsdp = fsdp == "fsdp"
    ckpt = ckpt == "ckpt"
    world_size = 2
    with temp_files_ctx(num=2) as temp_files:
        mp.spawn(
            _distributed_worker, (world_size, fsdp, ckpt, temp_files[0], temp_files[1], expected), nprocs=world_size
        )