Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
6dbc78df
Commit
6dbc78df
authored
Apr 10, 2016
by
Davis King
Browse files
Fixed errors in documentation
parent
f75e2dbf
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
3 additions
and
3 deletions
+3
-3
dlib/dnn/loss_abstract.h
dlib/dnn/loss_abstract.h
+1
-1
dlib/dnn/trainer_abstract.h
dlib/dnn/trainer_abstract.h
+2
-2
No files found.
dlib/dnn/loss_abstract.h
View file @
6dbc78df
...
@@ -323,7 +323,7 @@ namespace dlib
...
@@ -323,7 +323,7 @@ namespace dlib
- sub.get_output().nc() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.get_output().num_samples() == input_tensor.num_samples()
and the output label is the predicted class for each classified object. The number
and the output label is the predicted class for each classified object. The number
of possible output classes is sub.get_output().k()
+1
.
of possible output classes is sub.get_output().k().
!*/
!*/
template
<
template
<
...
...
dlib/dnn/trainer_abstract.h
View file @
6dbc78df
...
@@ -286,7 +286,7 @@ namespace dlib
...
@@ -286,7 +286,7 @@ namespace dlib
The goal of training is to find the network parameters that minimize
The goal of training is to find the network parameters that minimize
get_net().compute_loss(data.begin(), data.end(), labels.begin()).
get_net().compute_loss(data.begin(), data.end(), labels.begin()).
- The optimizer will run until get_step_size() < get_min_step_size() or
- The optimizer will run until get_step_size() < get_min_step_size() or
get_max_num_epochs() training epochs have been execute
s
.
get_max_num_epochs() training epochs have been execute
d
.
- Each layer in the network will be optimized by its corresponding solver
- Each layer in the network will be optimized by its corresponding solver
in get_solvers().
in get_solvers().
- Each call to train DOES NOT reinitialize the state of get_net() or
- Each call to train DOES NOT reinitialize the state of get_net() or
...
@@ -311,7 +311,7 @@ namespace dlib
...
@@ -311,7 +311,7 @@ namespace dlib
The goal of training is to find the network parameters that minimize
The goal of training is to find the network parameters that minimize
get_net().compute_loss(data.begin(), data.end()).
get_net().compute_loss(data.begin(), data.end()).
- The optimizer will run until get_step_size() < get_min_step_size() or
- The optimizer will run until get_step_size() < get_min_step_size() or
get_max_num_epochs() training epochs have been execute
s
.
get_max_num_epochs() training epochs have been execute
d
.
- Each layer in the network will be optimized by its corresponding solver
- Each layer in the network will be optimized by its corresponding solver
in get_solvers().
in get_solvers().
- Each call to train DOES NOT reinitialize the state of get_net() or
- Each call to train DOES NOT reinitialize the state of get_net() or
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment