Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
6dbc78df
"tools/vscode:/vscode.git/clone" did not exist on "bd2e0bc306fcaefc63f6c8a43d2fc84cfb6242c9"
Commit
6dbc78df
authored
Apr 10, 2016
by
Davis King
Browse files
Fixed errors in documentation
parent
f75e2dbf
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
3 additions
and
3 deletions
+3
-3
dlib/dnn/loss_abstract.h
dlib/dnn/loss_abstract.h
+1
-1
dlib/dnn/trainer_abstract.h
dlib/dnn/trainer_abstract.h
+2
-2
No files found.
dlib/dnn/loss_abstract.h
View file @
6dbc78df
...
...
@@ -323,7 +323,7 @@ namespace dlib
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
and the output label is the predicted class for each classified object. The number
of possible output classes is sub.get_output().k()
+1
.
of possible output classes is sub.get_output().k().
!*/
template
<
...
...
dlib/dnn/trainer_abstract.h
View file @
6dbc78df
...
...
@@ -286,7 +286,7 @@ namespace dlib
The goal of training is to find the network parameters that minimize
get_net().compute_loss(data.begin(), data.end(), labels.begin()).
- The optimizer will run until get_step_size() < get_min_step_size() or
get_max_num_epochs() training epochs have been execute
s
.
get_max_num_epochs() training epochs have been execute
d
.
- Each layer in the network will be optimized by its corresponding solver
in get_solvers().
- Each call to train DOES NOT reinitialize the state of get_net() or
...
...
@@ -311,7 +311,7 @@ namespace dlib
The goal of training is to find the network parameters that minimize
get_net().compute_loss(data.begin(), data.end()).
- The optimizer will run until get_step_size() < get_min_step_size() or
get_max_num_epochs() training epochs have been execute
s
.
get_max_num_epochs() training epochs have been execute
d
.
- Each layer in the network will be optimized by its corresponding solver
in get_solvers().
- Each call to train DOES NOT reinitialize the state of get_net() or
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment