matrix_eig.cpp 6.89 KB
Newer Older
1
// Copyright (C) 2009  Davis E. King (davis@dlib.net)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// License: Boost Software License   See LICENSE.txt for the full license.


#include <dlib/matrix.h>
#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <vector>
#include "../stl_checked.h"
#include "../array.h"
#include "../rand.h"
#include <dlib/string.h>

#include "tester.h"

namespace  
{

    using namespace test;
    using namespace dlib;
    using namespace std;

    logger dlog("test.matrix_eig");

    dlib::rand::float_1a rnd;

// ----------------------------------------------------------------------------------------

    template <typename type>
    const matrix<type> randm(long r, long c)
    {
        matrix<type> m(r,c);
        for (long row = 0; row < m.nr(); ++row)
        {
            for (long col = 0; col < m.nc(); ++col)
            {
                m(row,col) = static_cast<type>(rnd.get_random_double()); 
            }
        }

        return m;
    }

    template <typename type, long NR, long NC>
    const matrix<type,NR,NC> randm()
    {
        matrix<type,NR,NC> m;
        for (long row = 0; row < m.nr(); ++row)
        {
            for (long col = 0; col < m.nc(); ++col)
            {
                m(row,col) = static_cast<type>(rnd.get_random_double()); 
            }
        }

        return m;
    }

// ----------------------------------------------------------------------------------------

63
64
    template <typename matrix_type, typename U>
    void test_eigenvalue_impl ( const matrix_type& m,  const eigenvalue_decomposition<U>& test )
65
66
    {
        typedef typename matrix_type::type type;
67
        const type eps = 10*max(abs(m))*sqrt(std::numeric_limits<type>::epsilon());
68
69
70
71
        dlog << LDEBUG << "test_eigenvalue():  " << m.nr() << " x " << m.nc() << "  eps: " << eps;
        print_spinner();


72
        DLIB_TEST(test.dim() == m.nr());
73
74
75

        // make sure all the various ways of asking for the eigenvalues are actually returning a
        // consistent set of eigenvalues.
76
77
78
79
        DLIB_TEST(equal(real(test.get_eigenvalues()), test.get_real_eigenvalues(), eps)); 
        DLIB_TEST(equal(imag(test.get_eigenvalues()), test.get_imag_eigenvalues(), eps)); 
        DLIB_TEST(equal(real(diag(test.get_d())), test.get_real_eigenvalues(), eps)); 
        DLIB_TEST(equal(imag(diag(test.get_d())), test.get_imag_eigenvalues(), eps)); 
80
81
82
83
84

        matrix<type> eig1 ( real_eigenvalues(m));
        matrix<type> eig2 ( test.get_real_eigenvalues());
        sort(&eig1(0), &eig1(0) + eig1.size());
        sort(&eig2(0), &eig2(0) + eig2.size());
85
        DLIB_TEST(max(abs(eig1 - eig2)) < eps);
86
87
88
89
90
91
92

        const matrix<type> V = test.get_pseudo_v();
        const matrix<type> D = test.get_pseudo_d();
        const matrix<complex<type> > CV = test.get_v();
        const matrix<complex<type> > CD = test.get_d();
        const matrix<complex<type> > CM = complex_matrix(m, uniform_matrix<type>(m.nr(),m.nc(),0));

93
94
95
96
        DLIB_TEST(V.nr() == test.dim());
        DLIB_TEST(V.nc() == test.dim());
        DLIB_TEST(D.nr() == test.dim());
        DLIB_TEST(D.nc() == test.dim());
97
98

        // CD is a diagonal matrix
99
        DLIB_TEST(diagm(diag(CD)) == CD);
100
101

        // verify that these things are actually eigenvalues and eigenvectors of m
102
        DLIB_TEST_MSG(max(abs(m*V - V*D)) < eps, max(abs(m*V - V*D)) << "   " << eps);
103
        DLIB_TEST(max(norm(CM*CV - CV*CD)) < eps);
104
105
106
107
108
109

        // if m is a symmetric matrix
        if (max(abs(m-trans(m))) < 1e-5)
        {
            dlog << LTRACE << "m is symmetric";
            // there aren't any imaginary eigenvalues 
110
111
            DLIB_TEST(max(abs(test.get_imag_eigenvalues())) < eps); 
            DLIB_TEST(diagm(diag(D)) == D);
112

113
114
115
116
117
118
119
120
121
122
123
            // only check the determinant against the eigenvalues for small matrices
            // because for huge ones the determinant might be so big it overflows a floating point number.
            if (m.nr() < 50) 
            {
                const type mdet = det(m);
                DLIB_TEST_MSG(std::abs(prod(test.get_real_eigenvalues()) - mdet) < std::abs(mdet)*sqrt(std::numeric_limits<type>::epsilon()),
                              std::abs(prod(test.get_real_eigenvalues()) - mdet) <<"    eps: " << std::abs(mdet)*sqrt(std::numeric_limits<type>::epsilon())
                              << "  mdet: "<< mdet << "   prod(eig): " << prod(test.get_real_eigenvalues())
                );
            }

124
            // V is orthogonal
125
126
            DLIB_TEST(equal(V*trans(V), identity_matrix<type>(test.dim()), eps));
            DLIB_TEST(equal(m , V*D*trans(V), eps));
127
128
129
130
        }
        else
        {
            dlog << LTRACE << "m is NOT symmetric";
131
            DLIB_TEST_MSG(equal(m , V*D*inv(V), eps), max(abs(m - V*D*inv(V))));
132
133
134
        }
    }

135
136
137
138
139
140
141
142
143
144
145
146
// ----------------------------------------------------------------------------------------

    template <typename matrix_type>
    void test_eigenvalue ( const matrix_type& m )
    {
        eigenvalue_decomposition<matrix_type> test(m);
        test_eigenvalue_impl(m, test);

        eigenvalue_decomposition<matrix_type> test_symm(make_symmetric(m));
        test_eigenvalue_impl(make_symmetric(m), test_symm);
    }

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// ----------------------------------------------------------------------------------------

    void matrix_test_double()
    {

        test_eigenvalue(10*randm<double>(1,1));
        test_eigenvalue(10*randm<double>(2,2));
        test_eigenvalue(10*randm<double>(3,3));
        test_eigenvalue(10*randm<double>(4,4));
        test_eigenvalue(10*randm<double>(15,15));
        test_eigenvalue(10*randm<double>(150,150));

        test_eigenvalue(10*randm<double,1,1>());
        test_eigenvalue(10*randm<double,2,2>());
        test_eigenvalue(10*randm<double,3,3>());
    }

// ----------------------------------------------------------------------------------------

    void matrix_test_float()
    {

        test_eigenvalue(10*randm<float>(1,1));
        test_eigenvalue(10*randm<float>(2,2));
        test_eigenvalue(10*randm<float>(3,3));
        test_eigenvalue(10*randm<float>(4,4));
        test_eigenvalue(10*randm<float>(15,15));
174
        test_eigenvalue(10*randm<float>(50,50));
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

        test_eigenvalue(10*randm<float,1,1>());
        test_eigenvalue(10*randm<float,2,2>());
        test_eigenvalue(10*randm<float,3,3>());
    }

// ----------------------------------------------------------------------------------------

    class matrix_tester : public tester
    {
    public:
        matrix_tester (
        ) :
            tester ("test_matrix_eig",
                    "Runs tests on the matrix eigen decomp component.")
        {
            rnd.set_seed(cast_to_string(time(0)));
        }

        void perform_test (
        )
        {
            dlog << LINFO << "seed string: " << rnd.get_seed();

            dlog << LINFO << "begin testing with double";
            matrix_test_double();
            dlog << LINFO << "begin testing with float";
            matrix_test_float();
        }
    } a;

}