matrix_eig.cpp 6.58 KB
Newer Older
1
// Copyright (C) 2009  Davis E. King (davis@dlib.net)
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// License: Boost Software License   See LICENSE.txt for the full license.


#include <dlib/matrix.h>
#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <vector>
#include "../stl_checked.h"
#include "../array.h"
#include "../rand.h"
#include <dlib/string.h>

#include "tester.h"

namespace  
{

    using namespace test;
    using namespace dlib;
    using namespace std;

    logger dlog("test.matrix_eig");

    dlib::rand::float_1a rnd;

// ----------------------------------------------------------------------------------------

    template <typename mat_type>
    const matrix<typename mat_type::type> symm(const mat_type& m) { return m*trans(m); }

// ----------------------------------------------------------------------------------------

    template <typename type>
    const matrix<type> randm(long r, long c)
    {
        matrix<type> m(r,c);
        for (long row = 0; row < m.nr(); ++row)
        {
            for (long col = 0; col < m.nc(); ++col)
            {
                m(row,col) = static_cast<type>(rnd.get_random_double()); 
            }
        }

        return m;
    }

    template <typename type, long NR, long NC>
    const matrix<type,NR,NC> randm()
    {
        matrix<type,NR,NC> m;
        for (long row = 0; row < m.nr(); ++row)
        {
            for (long col = 0; col < m.nc(); ++col)
            {
                m(row,col) = static_cast<type>(rnd.get_random_double()); 
            }
        }

        return m;
    }

// ----------------------------------------------------------------------------------------

    template <typename matrix_type>
    void test_eigenvalue ( const matrix_type& m)
    {
        typedef typename matrix_type::type type;
        const type eps = max(abs(m))*sqrt(std::numeric_limits<type>::epsilon());
        dlog << LDEBUG << "test_eigenvalue():  " << m.nr() << " x " << m.nc() << "  eps: " << eps;
        print_spinner();


        eigenvalue_decomposition<matrix_type> test(m);

79
        DLIB_TEST(test.dim() == m.nr());
80
81
82

        // make sure all the various ways of asking for the eigenvalues are actually returning a
        // consistent set of eigenvalues.
83
84
85
86
        DLIB_TEST(equal(real(test.get_eigenvalues()), test.get_real_eigenvalues(), eps)); 
        DLIB_TEST(equal(imag(test.get_eigenvalues()), test.get_imag_eigenvalues(), eps)); 
        DLIB_TEST(equal(real(diag(test.get_d())), test.get_real_eigenvalues(), eps)); 
        DLIB_TEST(equal(imag(diag(test.get_d())), test.get_imag_eigenvalues(), eps)); 
87
88
89
90
91

        matrix<type> eig1 ( real_eigenvalues(m));
        matrix<type> eig2 ( test.get_real_eigenvalues());
        sort(&eig1(0), &eig1(0) + eig1.size());
        sort(&eig2(0), &eig2(0) + eig2.size());
92
        DLIB_TEST(max(abs(eig1 - eig2)) < eps);
93
94
95
96
97
98
99

        const matrix<type> V = test.get_pseudo_v();
        const matrix<type> D = test.get_pseudo_d();
        const matrix<complex<type> > CV = test.get_v();
        const matrix<complex<type> > CD = test.get_d();
        const matrix<complex<type> > CM = complex_matrix(m, uniform_matrix<type>(m.nr(),m.nc(),0));

100
101
102
103
        DLIB_TEST(V.nr() == test.dim());
        DLIB_TEST(V.nc() == test.dim());
        DLIB_TEST(D.nr() == test.dim());
        DLIB_TEST(D.nc() == test.dim());
104
105

        // CD is a diagonal matrix
106
        DLIB_TEST(diagm(diag(CD)) == CD);
107
108

        // verify that these things are actually eigenvalues and eigenvectors of m
109
110
        DLIB_TEST(max(abs(m*V - V*D)) < eps);
        DLIB_TEST(max(norm(CM*CV - CV*CD)) < eps);
111
112
113
114
115
116

        // if m is a symmetric matrix
        if (max(abs(m-trans(m))) < 1e-5)
        {
            dlog << LTRACE << "m is symmetric";
            // there aren't any imaginary eigenvalues 
117
118
            DLIB_TEST(max(abs(test.get_imag_eigenvalues())) < eps); 
            DLIB_TEST(diagm(diag(D)) == D);
119
120

            // V is orthogonal
121
122
            DLIB_TEST(equal(V*trans(V), identity_matrix<type>(test.dim()), eps));
            DLIB_TEST(equal(m , V*D*trans(V), eps));
123
124
125
126
        }
        else
        {
            dlog << LTRACE << "m is NOT symmetric";
127
            DLIB_TEST_MSG(equal(m , V*D*inv(V), eps), max(abs(m - V*D*inv(V))));
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        }
    }

// ----------------------------------------------------------------------------------------

    void matrix_test_double()
    {

        test_eigenvalue(10*randm<double>(1,1));
        test_eigenvalue(10*randm<double>(2,2));
        test_eigenvalue(10*randm<double>(3,3));
        test_eigenvalue(10*randm<double>(4,4));
        test_eigenvalue(10*randm<double>(15,15));
        test_eigenvalue(10*randm<double>(150,150));

        test_eigenvalue(10*randm<double,1,1>());
        test_eigenvalue(10*randm<double,2,2>());
        test_eigenvalue(10*randm<double,3,3>());

        test_eigenvalue(10*symm(randm<double>(1,1)));
        test_eigenvalue(10*symm(randm<double>(2,2)));
        test_eigenvalue(10*symm(randm<double>(3,3)));
        test_eigenvalue(10*symm(randm<double>(4,4)));
        test_eigenvalue(10*symm(randm<double>(15,15)));
        test_eigenvalue(10*symm(randm<double>(150,150)));

    }

// ----------------------------------------------------------------------------------------

    void matrix_test_float()
    {

        test_eigenvalue(10*randm<float>(1,1));
        test_eigenvalue(10*randm<float>(2,2));
        test_eigenvalue(10*randm<float>(3,3));
        test_eigenvalue(10*randm<float>(4,4));
        test_eigenvalue(10*randm<float>(15,15));
        test_eigenvalue(10*randm<float>(150,150));

        test_eigenvalue(10*randm<float,1,1>());
        test_eigenvalue(10*randm<float,2,2>());
        test_eigenvalue(10*randm<float,3,3>());

        test_eigenvalue(10*symm(randm<float>(1,1)));
        test_eigenvalue(10*symm(randm<float>(2,2)));
        test_eigenvalue(10*symm(randm<float>(3,3)));
        test_eigenvalue(10*symm(randm<float>(4,4)));
        test_eigenvalue(10*symm(randm<float>(15,15)));
        test_eigenvalue(10*symm(randm<float>(150,150)));
    }

// ----------------------------------------------------------------------------------------

    class matrix_tester : public tester
    {
    public:
        matrix_tester (
        ) :
            tester ("test_matrix_eig",
                    "Runs tests on the matrix eigen decomp component.")
        {
            rnd.set_seed(cast_to_string(time(0)));
        }

        void perform_test (
        )
        {
            dlog << LINFO << "seed string: " << rnd.get_seed();

            dlog << LINFO << "begin testing with double";
            matrix_test_double();
            dlog << LINFO << "begin testing with float";
            matrix_test_float();
        }
    } a;

}