structural_svm_problem.h 12.4 KB
Newer Older
Davis King's avatar
Davis King committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// Copyright (C) 2011  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_STRUCTURAL_SVM_PRObLEM_H__
#define DLIB_STRUCTURAL_SVM_PRObLEM_H__

#include "structural_svm_problem_abstract.h"
#include "../algs.h"
#include <vector>
#include "../optimization/optimization_oca.h"
#include "../matrix.h"
#include "sparse_vector.h"
#include <iostream>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
20
        typename structural_svm_problem
Davis King's avatar
Davis King committed
21
        >
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    class cache_element_structural_svm 
    {
    public:

        cache_element_structural_svm (
        ) : prob(0), sample_idx(0) {}

        typedef typename structural_svm_problem::scalar_type scalar_type;
        typedef typename structural_svm_problem::matrix_type matrix_type;
        typedef typename structural_svm_problem::feature_vector_type feature_vector_type;

        void init (
            const structural_svm_problem* prob_,
            const long idx
        )
        /*!
            ensures
                - This object will be a cache for the idx-th sample in the given
                  structural_svm_problem.
        !*/
        {
            prob = prob_;
            sample_idx = idx;

            loss.clear();
            psi.clear();
            lru_count.clear();

            prob->get_truth_joint_feature_vector(idx, true_psi);
        }

        void get_truth_joint_feature_vector_cached (
            feature_vector_type& psi 
        ) const
        {
            psi = true_psi;
        }

        void separation_oracle_cached (
            const bool skip_cache,
            const scalar_type& cur_risk_lower_bound,
            const matrix_type& current_solution,
            scalar_type& out_loss,
            feature_vector_type& out_psi
        ) const
        {
            if (!skip_cache)
            {
                scalar_type best_risk = -std::numeric_limits<scalar_type>::infinity();
                unsigned long best_idx = 0;


                using sparse_vector::dot;
                using dlib::dot;

                const scalar_type dot_true_psi = dot(true_psi, current_solution);

                // figure out which element in the cache is the best (i.e. has the biggest risk)
                long max_lru_count = 0;
                for (unsigned long i = 0; i < loss.size(); ++i)
                {
                    const scalar_type risk = loss[i] + dot(psi[i], current_solution) - dot_true_psi;
                    if (risk > best_risk)
                    {
                        best_risk = risk;
                        out_loss = loss[i];
                        best_idx = i;
                    }
                    if (lru_count[i] > max_lru_count)
                        max_lru_count = lru_count[i];
                }

                if (best_risk - cur_risk_lower_bound > prob->get_epsilon())
                {
                    out_psi = psi[best_idx];
                    lru_count[best_idx] = max_lru_count + 1;
                    return;
                }
            }


            prob->separation_oracle(sample_idx, current_solution, out_loss, out_psi);

            // if the cache is full
            if (loss.size() >= prob->get_max_cache_size())
            {
                // find least recently used cache entry for idx-th sample
                const long i       = index_of_min(vector_to_matrix(lru_count));

                // save our new data in the cache
                loss[i] = out_loss;
                psi[i]  = out_psi;

                const long max_use = max(vector_to_matrix(lru_count));
                // Make sure this new cache entry has the best lru count since we have used
                // it most recently.
                lru_count[i] = max_use + 1;
            }
            else
            {
                loss.push_back(out_loss);
                psi.push_back(out_psi);
                long max_use = 1;
                if (lru_count.size() != 0)
                    max_use = max(vector_to_matrix(lru_count)) + 1;
                lru_count.push_back(lru_count.size());
            }
        }

        const structural_svm_problem* prob;

        long sample_idx;

        mutable feature_vector_type true_psi;
        mutable std::vector<scalar_type> loss;
        mutable std::vector<feature_vector_type> psi;
        mutable std::vector<long> lru_count;
    };

// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type_,
        typename feature_vector_type_ = matrix_type_
        >
    class structural_svm_problem : public oca_problem<matrix_type_> 
Davis King's avatar
Davis King committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    {
    public:
        /*!
            CONVENTION
                - C == get_c()
                - eps == get_epsilon()
                - if (skip_cache) then
                    - we won't use the oracle cache when we need to evaluate the separation
                      oracle. Instead, we will directly call the user supplied separation_oracle().

                - get_max_cache_size() == max_cache_size

                - if (cache.size() != 0) then
                    - cache.size() == get_num_samples()
                    - for all i: cache[i] == the cached results of calls to separation_oracle()
                      for the i-th sample.
        !*/

166
        typedef matrix_type_ matrix_type;
Davis King's avatar
Davis King committed
167
168
169
170
171
        typedef typename matrix_type::type scalar_type;
        typedef feature_vector_type_ feature_vector_type;

        structural_svm_problem (
        ) :
172
            cur_risk_lower_bound(0),
Davis King's avatar
Davis King committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
            eps(0.001),
            verbose(false),
            skip_cache(true),
            max_cache_size(10),
            C(1)
        {}

        void set_epsilon (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\t void structural_svm_problem::set_epsilon()"
                << "\n\t eps_ must be greater than 0"
                << "\n\t eps_: " << eps_ 
                << "\n\t this: " << this
                );

            eps = eps_;
        }

        const scalar_type get_epsilon (
        ) const { return eps; }

        void set_max_cache_size (
            unsigned long max_size
        )
        {
            max_cache_size = max_size;
        }

        unsigned long get_max_cache_size (
        ) const { return max_cache_size; }

        void be_verbose (
        ) 
        {
            verbose = true;
        }

        void be_quiet(
        )
        {
            verbose = false;
        }

        scalar_type get_c (
        ) const { return C; }

        void set_c (
            scalar_type C_
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT(C_ > 0,
                "\t void structural_svm_problem::set_c()"
                << "\n\t C_ must be greater than 0"
                << "\n\t C_:    " << C_ 
                << "\n\t this: " << this
                );

            C = C_; 
        }

        virtual long get_num_dimensions (
        ) const = 0;

        virtual long get_num_samples (
        ) const = 0;

        virtual void get_truth_joint_feature_vector (
            long idx,
            feature_vector_type& psi 
        ) const = 0;

        virtual void separation_oracle (
            const long idx,
            const matrix_type& current_solution,
            scalar_type& loss,
            feature_vector_type& psi
        ) const = 0;

    private:

        virtual bool risk_has_lower_bound (
            scalar_type& lower_bound
        ) const 
        { 
            lower_bound = 0;
            return true; 
        }

        virtual bool optimization_status (
            scalar_type current_objective_value,
            scalar_type current_error_gap,
269
270
            scalar_type current_risk_value,
            scalar_type current_risk_gap,
Davis King's avatar
Davis King committed
271
272
273
274
275
276
277
            unsigned long num_cutting_planes,
            unsigned long num_iterations
        ) const 
        {
            if (verbose)
            {
                using namespace std;
278
279
280
281
282
283
                cout << "objective:     " << current_objective_value << endl;
                cout << "objective gap: " << current_error_gap << endl;
                cout << "risk:          " << current_risk_value << endl;
                cout << "risk gap:      " << current_risk_gap << endl;
                cout << "num planes:    " << num_cutting_planes << endl;
                cout << "iter:          " << num_iterations << endl;
Davis King's avatar
Davis King committed
284
285
286
                cout << endl;
            }

287
            cur_risk_lower_bound = std::max<scalar_type>(current_risk_value - current_risk_gap, 0);
Davis King's avatar
Davis King committed
288
289
290

            bool should_stop = false;

291
            if (current_risk_gap < eps)
Davis King's avatar
Davis King committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
                should_stop = true;

            if (should_stop && !skip_cache)
            {
                // Instead of stopping we shouldn't use the cache on the next iteration.  This way
                // we can be sure to have the best solution rather than assuming the cache is up-to-date
                // enough.
                should_stop = false;
                skip_cache = true;
            }
            else
            {
                skip_cache = false;
            }


            return should_stop;
        }

        virtual void get_risk (
            matrix_type& w,
            scalar_type& risk,
            matrix_type& subgradient
        ) const 
        {
            feature_vector_type ftemp;
            const unsigned long num = get_num_samples();

320
321
            // initialize the cache if necessary.
            if (cache.size() == 0 && max_cache_size != 0)
Davis King's avatar
Davis King committed
322
            {
323
324
325
326
                cache.resize(get_num_samples());
                for (unsigned long i = 0; i < cache.size(); ++i)
                    cache[i].init(this,i);
            }
327

328
329
330
            // initialize psi_true if necessary.  
            if (psi_true.size() == 0)
            {
Davis King's avatar
Davis King committed
331
332
                psi_true.set_size(w.size(),1);
                psi_true = 0;
333

334
                for (unsigned long i = 0; i < num; ++i)
Davis King's avatar
Davis King committed
335
                {
336
                    if (cache.size() == 0)
337
                        get_truth_joint_feature_vector(i, ftemp);
338
339
340
341
                    else
                        cache[i].get_truth_joint_feature_vector_cached(ftemp);

                    sparse_vector::subtract_from(psi_true, ftemp);
Davis King's avatar
Davis King committed
342
343
344
345
346
                }
            }

            subgradient = psi_true;
            scalar_type total_loss = 0;
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
            call_separation_oracle_on_all_samples(w,subgradient,total_loss);

            subgradient /= num;
            total_loss /= num;
            // Include a sanity check that the risk is always non-negative.
            risk = std::max<scalar_type>(total_loss + dot(subgradient,w), 0);
        }

        virtual void call_separation_oracle_on_all_samples (
            matrix_type& w,
            matrix_type& subgradient,
            scalar_type& total_loss
        ) const
        {
            feature_vector_type ftemp;
            const unsigned long num = get_num_samples();
Davis King's avatar
Davis King committed
363
364
365
366
367
            for (unsigned long i = 0; i < num; ++i)
            {
                scalar_type loss;
                separation_oracle_cached(i, w, loss, ftemp);
                total_loss += loss;
Davis King's avatar
Davis King committed
368
                sparse_vector::add_to(subgradient, ftemp);
Davis King's avatar
Davis King committed
369
370
371
            }
        }

372
    protected:
Davis King's avatar
Davis King committed
373
374
375
376
377
378
379
        void separation_oracle_cached (
            const long idx,
            const matrix_type& current_solution,
            scalar_type& loss,
            feature_vector_type& psi
        ) const 
        {
380
            if (cache.size() == 0)
Davis King's avatar
Davis King committed
381
            {
382
                separation_oracle(idx, current_solution, loss, psi);
Davis King's avatar
Davis King committed
383
            }
384
            else
Davis King's avatar
Davis King committed
385
            {
386
387
388
389
390
                cache[idx].separation_oracle_cached(skip_cache, 
                                                    cur_risk_lower_bound,
                                                    current_solution,
                                                    loss,
                                                    psi);
Davis King's avatar
Davis King committed
391
392
            }
        }
393
    private:
Davis King's avatar
Davis King committed
394
395


396
        mutable scalar_type cur_risk_lower_bound;
Davis King's avatar
Davis King committed
397
398
399
400
        mutable matrix_type psi_true;
        scalar_type eps;
        mutable bool verbose;

401

402
        mutable std::vector<cache_element_structural_svm<structural_svm_problem> > cache;
Davis King's avatar
Davis King committed
403
404
405
406
407
408
409
410
411
412
413
414
        mutable bool skip_cache;
        unsigned long max_cache_size;

        scalar_type C;
    };

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_STRUCTURAL_SVM_PRObLEM_H__