structural_svm_problem.h 9.06 KB
Newer Older
Davis King's avatar
Davis King committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
// Copyright (C) 2011  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_STRUCTURAL_SVM_PRObLEM_H__
#define DLIB_STRUCTURAL_SVM_PRObLEM_H__

#include "structural_svm_problem_abstract.h"
#include "../algs.h"
#include <vector>
#include "../optimization/optimization_oca.h"
#include "../matrix.h"
#include "sparse_vector.h"
#include <iostream>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type,
        typename feature_vector_type_ 
        >
    class structural_svm_problem : public oca_problem<matrix_type> 
    {
    public:
        /*!
            CONVENTION
                - C == get_c()
                - eps == get_epsilon()
                - if (skip_cache) then
                    - we won't use the oracle cache when we need to evaluate the separation
                      oracle. Instead, we will directly call the user supplied separation_oracle().

                - get_max_cache_size() == max_cache_size

                - if (cache.size() != 0) then
                    - cache.size() == get_num_samples()
                    - for all i: cache[i] == the cached results of calls to separation_oracle()
                      for the i-th sample.
        !*/

        typedef typename matrix_type::type scalar_type;
        typedef feature_vector_type_ feature_vector_type;

        structural_svm_problem (
        ) :
            eps(0.001),
            verbose(false),
            skip_cache(true),
            max_cache_size(10),
            C(1)
        {}

        void set_epsilon (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\t void structural_svm_problem::set_epsilon()"
                << "\n\t eps_ must be greater than 0"
                << "\n\t eps_: " << eps_ 
                << "\n\t this: " << this
                );

            eps = eps_;
        }

        const scalar_type get_epsilon (
        ) const { return eps; }

        void set_max_cache_size (
            unsigned long max_size
        )
        {
            max_cache_size = max_size;
        }

        unsigned long get_max_cache_size (
        ) const { return max_cache_size; }

        void be_verbose (
        ) 
        {
            verbose = true;
        }

        void be_quiet(
        )
        {
            verbose = false;
        }

        scalar_type get_c (
        ) const { return C; }

        void set_c (
            scalar_type C_
        ) 
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT(C_ > 0,
                "\t void structural_svm_problem::set_c()"
                << "\n\t C_ must be greater than 0"
                << "\n\t C_:    " << C_ 
                << "\n\t this: " << this
                );

            C = C_; 
        }

        virtual long get_num_dimensions (
        ) const = 0;

        virtual long get_num_samples (
        ) const = 0;

        virtual void get_truth_joint_feature_vector (
            long idx,
            feature_vector_type& psi 
        ) const = 0;

        virtual void separation_oracle (
            const long idx,
            const matrix_type& current_solution,
            scalar_type& loss,
            feature_vector_type& psi
        ) const = 0;

    private:

        virtual bool risk_has_lower_bound (
            scalar_type& lower_bound
        ) const 
        { 
            lower_bound = 0;
            return true; 
        }

        virtual bool optimization_status (
            scalar_type current_objective_value,
            scalar_type current_error_gap,
            unsigned long num_cutting_planes,
            unsigned long num_iterations
        ) const 
        {
            if (verbose)
            {
                using namespace std;
                cout << "svm objective: " << current_objective_value << endl;
                cout << "gap: " << current_error_gap << endl;
                cout << "num planes: " << num_cutting_planes << endl;
                cout << "iter: " << num_iterations << endl;
                cout << endl;
            }

            cur_gap = current_error_gap/get_c();

            bool should_stop = false;

            if (current_objective_value == 0)
                should_stop = true;
            else if (current_error_gap/current_objective_value < eps)
                should_stop = true;

            if (should_stop && !skip_cache)
            {
                // Instead of stopping we shouldn't use the cache on the next iteration.  This way
                // we can be sure to have the best solution rather than assuming the cache is up-to-date
                // enough.
                should_stop = false;
                skip_cache = true;
            }
            else
            {
                skip_cache = false;
            }


            return should_stop;
        }

        virtual void get_risk (
            matrix_type& w,
            scalar_type& risk,
            matrix_type& subgradient
        ) const 
        {
            feature_vector_type ftemp;
            const unsigned long num = get_num_samples();

            // initialize psi_true if we haven't done so already.  
            if (psi_true.size() == 0)
            {
                psi_true.set_size(w.size(),1);
                psi_true = 0;
                for (unsigned long i = 0; i < num; ++i)
                {
                    get_truth_joint_feature_vector(i, ftemp);
                    subtract_from(psi_true, ftemp);
                }
            }

            subgradient = psi_true;
            scalar_type total_loss = 0;
            for (unsigned long i = 0; i < num; ++i)
            {
                scalar_type loss;
                separation_oracle_cached(i, w, loss, ftemp);
                total_loss += loss;
                add_to(subgradient, ftemp);
            }

            subgradient /= num;
            total_loss /= num;
            risk = total_loss + dot(subgradient,w);
            cur_risk = risk;
        }

        void separation_oracle_cached (
            const long idx,
            const matrix_type& current_solution,
            scalar_type& loss,
            feature_vector_type& psi
        ) const 
        {

            if (cache.size() == 0 && max_cache_size != 0)
                cache.resize(get_num_samples());

            if (!skip_cache && max_cache_size != 0)
            {
                scalar_type best_val = -std::numeric_limits<scalar_type>::infinity();
                unsigned long best_idx = 0;

                cache_record& rec = cache[idx];

                // figure out which element in the cache is the best
                for (unsigned long i = 0; i < rec.loss.size(); ++i)
                {
                    using sparse_vector::dot;
                    const scalar_type temp = rec.loss[i] + dot(rec.psi[i], current_solution);
                    if (temp > best_val)
                    {
                        best_val = temp;
                        loss = rec.loss[i];
                        best_idx = i;
                    }
                }

                if (best_val > cur_risk-cur_gap)
                {
                    psi = rec.psi[best_idx];
                    rec.lru_count[best_idx] += 1;
                    return;
                }
            }


            separation_oracle(idx, current_solution, loss, psi);

            if (cache.size() != 0)
            {
                if (cache[idx].loss.size() < max_cache_size)
                {
                    cache[idx].loss.push_back(loss);
                    cache[idx].psi.push_back(psi);
                    cache[idx].lru_count.push_back(cache[idx].lru_count.size());
                }
                else
                {
                    // find least recently used cache entry for idx-th sample
                    const long i       = index_of_min(vector_to_matrix(cache[idx].lru_count));

                    // save our new data in the cache
                    cache[idx].loss[i] = loss;
                    cache[idx].psi[i]  = psi;

                    const long max_use = max(vector_to_matrix(cache[idx].lru_count));
                    // Make sure this new cache entry has the best lru count since we have used
                    // it most recently.
                    cache[idx].lru_count[i] = max_use + 1;
                }
            }
        }

        struct cache_record
        {
            std::vector<scalar_type> loss;
            std::vector<feature_vector_type> psi;
            std::vector<long> lru_count;
        };


        mutable scalar_type cur_risk;
        mutable scalar_type cur_gap;
        mutable matrix_type psi_true;
        scalar_type eps;
        mutable bool verbose;

        mutable std::vector<cache_record> cache;
        mutable bool skip_cache;
        unsigned long max_cache_size;

        scalar_type C;
    };

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_STRUCTURAL_SVM_PRObLEM_H__