svm_c_linear_trainer.h 20 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SVM_C_LiNEAR_TRAINER_H__
#define DLIB_SVM_C_LiNEAR_TRAINER_H__

#include "svm_c_linear_trainer_abstract.h"
#include "../algs.h"
#include "../optimization.h"
#include "../matrix.h"
#include "function.h"
#include "kernel.h"
#include <iostream>
#include <vector>
14
#include "sparse_vector.h"
15
16
17
18

namespace dlib
{

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// ----------------------------------------------------------------------------------------

    template <typename T>
    typename enable_if<is_matrix<typename T::type>,unsigned long>::type num_dimensions_in_samples (
        const T& samples
    ) 
    {
        if (samples.size() > 0)
            return samples(0).size();
        else
            return 0;
    }

    template <typename T>
    typename disable_if<is_matrix<typename T::type>,unsigned long>::type num_dimensions_in_samples (
        const T& samples
    ) 
    /*!
        T must be a sparse vector with an integral key type
    !*/
    {
        typedef typename T::type sample_type;
        // You are getting this error because you are attempting to use sparse sample vectors with
        // the svm_c_linear_trainer object but you aren't using an unsigned integer as your key type
        // in the sparse vectors.
        COMPILE_TIME_ASSERT(sparse_vector::has_unsigned_keys<sample_type>::value);


        // these should be sparse samples so look over all them to find the max dimension.
        unsigned long max_dim = 0;
        for (long i = 0; i < samples.size(); ++i)
        {
            if (samples(i).size() > 0)
                max_dim = std::max<unsigned long>(max_dim, (--samples(i).end())->first + 1);
        }

        return max_dim;
    }
    
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type, 
        typename in_sample_vector_type,
        typename in_scalar_vector_type
        >
    class oca_problem_c_svm : public oca_problem<matrix_type >
    {
    public:
        /*
            This class is used as part of the implementation of the svm_c_linear_trainer
            defined towards the end of this file.


            The bias parameter is dealt with by imagining that each sample vector has -1
            as its last element.
        */

        typedef typename matrix_type::type scalar_type;

        oca_problem_c_svm(
            const scalar_type C_pos,
            const scalar_type C_neg,
            const in_sample_vector_type& samples_,
            const in_scalar_vector_type& labels_,
Davis King's avatar
Davis King committed
84
85
            const bool be_verbose_,
            const scalar_type eps_
86
87
88
89
90
        ) :
            samples(samples_),
            labels(labels_),
            Cpos(C_pos),
            Cneg(C_neg),
Davis King's avatar
Davis King committed
91
92
            be_verbose(be_verbose_),
            eps(eps_)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        {
            dot_prods.resize(samples.size());
            is_first_call = true;
        }

        virtual scalar_type get_c (
        ) const 
        {
            return 1;
        }

        virtual long get_num_dimensions (
        ) const 
        {
            // plus 1 for the bias term
            return num_dimensions_in_samples(samples) + 1;
        }

111
        virtual bool optimization_status (
112
113
            scalar_type current_objective_value,
            scalar_type current_error_gap,
114
115
            unsigned long num_cutting_planes,
            unsigned long num_iterations
116
117
118
119
120
121
122
123
        ) const 
        {
            if (be_verbose)
            {
                using namespace std;
                cout << "svm objective: " << current_objective_value << endl;
                cout << "gap: " << current_error_gap << endl;
                cout << "num planes: " << num_cutting_planes << endl;
124
                cout << "iter: " << num_iterations << endl;
125
126
                cout << endl;
            }
127

Davis King's avatar
Davis King committed
128
            if (current_error_gap/current_objective_value < eps)
129
130
131
                return true;

            return false;
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        }

        virtual bool r_has_lower_bound (
            scalar_type& lower_bound
        ) const 
        { 
            lower_bound = 0;
            return true; 
        }

        virtual void get_risk (
            matrix_type& w,
            scalar_type& risk,
            matrix_type& subgradient
        ) const 
        {
            line_search(w);

            subgradient.set_size(w.size(),1);
            subgradient = 0;
            risk = 0;


            // loop over all the samples and compute the risk and its subgradient at the current solution point w
            for (long i = 0; i < samples.size(); ++i)
            {
                // multiply current SVM output for the ith sample by its label
                const scalar_type df_val = labels(i)*dot_prods[i];

                if (labels(i) > 0)
                    risk += Cpos*std::max<scalar_type>(0.0,1 - df_val);
                else
                    risk += Cneg*std::max<scalar_type>(0.0,1 - df_val);

                if (df_val < 1)
                {
                    if (labels(i) > 0)
                    {
                        subtract_from(subgradient, samples(i), Cpos);

                        subgradient(subgradient.size()-1) += Cpos;
                    }
                    else
                    {
                        add_to(subgradient, samples(i), Cneg);

                        subgradient(subgradient.size()-1) -= Cneg;
                    }
                }
            }

            scalar_type scale = 1.0/samples.size();

            risk *= scale;
            subgradient = scale*subgradient;
        }

    private:

    // -----------------------------------------------------
    // -----------------------------------------------------

        // The next few functions are overloads to handle both dense and sparse vectors
        template <typename EXP>
        inline void add_to (
            matrix_type& subgradient,
            const matrix_exp<EXP>& sample,
            const scalar_type& C
        ) const
        {
            for (long r = 0; r < sample.size(); ++r)
                subgradient(r) += C*sample(r);
        }

        template <typename T>
        inline typename disable_if<is_matrix<T> >::type add_to (
            matrix_type& subgradient,
            const T& sample,
            const scalar_type& C
        ) const
        {
213
214
            for (typename T::const_iterator i = sample.begin(); i != sample.end(); ++i)
                subgradient(i->first) += C*i->second;
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        }

        template <typename EXP>
        inline void subtract_from (
            matrix_type& subgradient,
            const matrix_exp<EXP>& sample,
            const scalar_type& C
        ) const
        {
            for (long r = 0; r < sample.size(); ++r)
                subgradient(r) -= C*sample(r);
        }

        template <typename T>
        inline typename disable_if<is_matrix<T> >::type subtract_from (
            matrix_type& subgradient,
            const T& sample,
            const scalar_type& C
        ) const
        {
235
236
            for (typename T::const_iterator i = sample.begin(); i != sample.end(); ++i)
                subgradient(i->first) -= C*i->second;
237
238
239
240
241
242
243
244
        }

        template <typename EXP>
        scalar_type dot_helper (
            const matrix_type& w,
            const matrix_exp<EXP>& sample
        ) const
        {
245
            return dot(colm(w,0,sample.size()), sample);
246
247
248
249
250
251
252
253
254
255
        }

        template <typename T>
        typename disable_if<is_matrix<T>,scalar_type >::type dot_helper (
            const matrix_type& w,
            const T& sample
        ) const
        {
            // compute a dot product between a dense column vector and a sparse vector
            scalar_type temp = 0;
256
257
258
            for (typename T::const_iterator i = sample.begin(); i != sample.end(); ++i)
                temp += w(i->first) * i->second;
            return temp;
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
        }

    // -----------------------------------------------------
    // -----------------------------------------------------

        void line_search (
            matrix_type& w
        ) const
        /*!
            ensures
                - does a line search to find a better w
                - for all i: #dot_prods[i] == dot(colm(#w,0,w.size()-1), samples(i)) - #w(w.size()-1)
        !*/
        {

            for (long i = 0; i < samples.size(); ++i)
                dot_prods[i] = dot_helper(w,samples(i)) - w(w.size()-1);

            if (is_first_call)
            {
                is_first_call = false;
                best_so_far = w;
                dot_prods_best = dot_prods;
            }
            else
            {
                // do line search going from best_so_far to w.  Store results in w.  
                // Here we use the line search algorithm presented in section 3.1.1 of Franc and Sonnenburg.

                const scalar_type A0 = length_squared(best_so_far - w);
                const scalar_type B0 = dot(best_so_far, w - best_so_far);

                const scalar_type scale_pos = (get_c()*Cpos)/samples.size();
                const scalar_type scale_neg = (get_c()*Cneg)/samples.size();

                ks.clear();
                ks.reserve(samples.size());

                scalar_type f0 = B0;
                for (long i = 0; i < samples.size(); ++i)
                {
                    const scalar_type& scale = (labels(i)>0) ? scale_pos : scale_neg;

                    const scalar_type B = scale*labels(i) * ( dot_prods_best[i] - dot_prods[i]);
                    const scalar_type C = scale*(1 - labels(i)* dot_prods_best[i]);
                    // Note that if B is 0 then it doesn't matter what k is set to.  So 0 is fine.
                    scalar_type k = 0;
                    if (B != 0)
                        k = -C/B;

                    if (k > 0)
                        ks.push_back(helper(k, std::abs(B)));

                    if ( (B < 0 && k > 0) || (B > 0 && k <= 0) )
                        f0 += B;
                }

316
                scalar_type opt_k = 1;
317
318
319
                // ks.size() == 0 shouldn't happen but check anyway
                if (f0 >= 0 || ks.size() == 0)
                {
320
321
322
323
324
325
326
                    // Getting here means that we aren't searching in a descent direction.  
                    // We could take a zero step but instead lets just assign w to the new best
                    // so far point just to make sure we don't get stuck coming back to this 
                    // case over and over.  This might happen if we never move the best point 
                    // seen so far.

                    // So we let opt_k be 1
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
                }
                else
                {
                    std::sort(ks.begin(), ks.end());

                    // figure out where f0 goes positive.
                    for (unsigned long i = 0; i < ks.size(); ++i)
                    {
                        f0 += ks[i].B;
                        if (f0 + A0*ks[i].k >= 0)
                        {
                            opt_k = ks[i].k;
                            break;
                        }
                    }

                }

345
346
347
348
349
350
351
352
353
                // take the step suggested by the line search
                best_so_far = (1-opt_k)*best_so_far + opt_k*w;

                // update best_so_far dot products
                for (unsigned long i = 0; i < dot_prods_best.size(); ++i)
                    dot_prods_best[i] = (1-opt_k)*dot_prods_best[i] + opt_k*dot_prods[i];


                const scalar_type mu = 0.1;
Davis King's avatar
Davis King committed
354
                // Make sure we always take a little bit of a step towards w regardless of what the
355
356
357
                // line search says to do.  We do this since it is possible that some steps won't 
                // advance the best_so_far point. So this ensures we always make some progress each 
                // iteration.
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
                w = (1-mu)*best_so_far + mu*w;

                // update dot products
                for (unsigned long i = 0; i < dot_prods.size(); ++i)
                    dot_prods[i] = (1-mu)*dot_prods_best[i] + mu*dot_prods[i];
            }
        }

        struct helper
        {
            helper(scalar_type k_, scalar_type B_) : k(k_), B(B_) {}
            scalar_type k;
            scalar_type B;

            bool operator< (const helper& item) const { return k < item.k; }
        };

        mutable std::vector<helper> ks;

        mutable bool is_first_call;
        mutable std::vector<scalar_type> dot_prods;

        mutable matrix_type best_so_far;  // best w seen so far
        mutable std::vector<scalar_type> dot_prods_best; // dot products between best_so_far and samples


        const in_sample_vector_type& samples;
        const in_scalar_vector_type& labels;
        const scalar_type Cpos;
        const scalar_type Cneg;

Davis King's avatar
Davis King committed
389
390
        const bool be_verbose;
        const scalar_type eps;
391
392
    };

Davis King's avatar
Davis King committed
393
// ----------------------------------------------------------------------------------------
394
395
396
397
398
399
400
401
402
403
404
405

    template <
        typename matrix_type, 
        typename in_sample_vector_type,
        typename in_scalar_vector_type,
        typename scalar_type
        >
    oca_problem_c_svm<matrix_type, in_sample_vector_type, in_scalar_vector_type> make_oca_problem_c_svm (
        const scalar_type C_pos,
        const scalar_type C_neg,
        const in_sample_vector_type& samples,
        const in_scalar_vector_type& labels,
Davis King's avatar
Davis King committed
406
407
        const bool be_verbose,
        const scalar_type eps
408
409
    )
    {
Davis King's avatar
Davis King committed
410
        return oca_problem_c_svm<matrix_type, in_sample_vector_type, in_scalar_vector_type>(C_pos, C_neg, samples, labels, be_verbose, eps);
411
    }
Davis King's avatar
Davis King committed
412

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
// ----------------------------------------------------------------------------------------

    template <
        typename K 
        >
    class svm_c_linear_trainer
    {

    public:
        typedef K kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        svm_c_linear_trainer (
        )
        {
            Cpos = 1;
            Cneg = 1;
Davis King's avatar
Davis King committed
433
434
            verbose = false;
            eps = 0.001;
435
436
437
438
439
440
        }

        explicit svm_c_linear_trainer (
            const scalar_type& C 
        )
        {
Davis King's avatar
Davis King committed
441
442
443
444
445
446
447
448
            // make sure requires clause is not broken
            DLIB_ASSERT(C > 0,
                "\t svm_c_linear_trainer::svm_c_linear_trainer()"
                << "\n\t C must be greater than 0"
                << "\n\t C:    " << C 
                << "\n\t this: " << this
                );

449
450
451
452
            Cpos = C;
            Cneg = C;
        }

Davis King's avatar
Davis King committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
        void set_epsilon (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\t void svm_c_linear_trainer::set_epsilon()"
                << "\n\t eps_ must be greater than 0"
                << "\n\t eps_: " << eps_ 
                << "\n\t this: " << this
                );

            eps = eps_;
        }

        const scalar_type get_epsilon (
        ) const { return eps; }

        void be_verbose (
        )
        {
            verbose = true;
        }

        void be_quiet (
        )
        {
            verbose = false;
        }

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        void set_oca (
            const oca& item
        )
        {
            solver = item;
        }

        const oca get_oca (
        ) const
        {
            return solver;
        }

        const kernel_type get_kernel (
        ) const
        {
            return kernel_type();
        }

        void set_c (
            scalar_type C 
        )
        {
Davis King's avatar
Davis King committed
506
507
508
509
510
511
512
513
            // make sure requires clause is not broken
            DLIB_ASSERT(C > 0,
                "\t void svm_c_linear_trainer::set_c()"
                << "\n\t C must be greater than 0"
                << "\n\t C:    " << C 
                << "\n\t this: " << this
                );

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
            Cpos = C;
            Cneg = C;
        }

        const scalar_type get_c_class1 (
        ) const
        {
            return Cpos;
        }

        const scalar_type get_c_class2 (
        ) const
        {
            return Cneg;
        }

        void set_c_class1 (
            scalar_type C
        )
        {
Davis King's avatar
Davis King committed
534
535
536
537
538
539
540
541
            // make sure requires clause is not broken
            DLIB_ASSERT(C > 0,
                "\t void svm_c_linear_trainer::set_c_class1()"
                << "\n\t C must be greater than 0"
                << "\n\t C:    " << C 
                << "\n\t this: " << this
                );

542
543
544
545
546
547
548
            Cpos = C;
        }

        void set_c_class2 (
            scalar_type C
        )
        {
Davis King's avatar
Davis King committed
549
550
551
552
553
554
555
556
            // make sure requires clause is not broken
            DLIB_ASSERT(C > 0,
                "\t void svm_c_linear_trainer::set_c_class2()"
                << "\n\t C must be greater than 0"
                << "\n\t C:    " << C 
                << "\n\t this: " << this
                );

557
558
559
560
561
562
563
564
565
566
567
568
            Cneg = C;
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
Davis King's avatar
Davis King committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
            scalar_type obj;
            return do_train(vector_to_matrix(x),vector_to_matrix(y),obj);
        }


        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y,
            scalar_type& svm_objective
        ) const
        {
            return do_train(vector_to_matrix(x),vector_to_matrix(y),svm_objective);
        }

    private:

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y,
            scalar_type& svm_objective
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_binary_classification_problem(x,y) == true,
                "\t decision_function svm_c_linear_trainer::train(x,y)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t x.nr(): " << x.nr() 
                << "\n\t y.nr(): " << y.nr() 
                << "\n\t x.nc(): " << x.nc() 
                << "\n\t y.nc(): " << y.nc() 
                << "\n\t is_binary_classification_problem(x,y): " << is_binary_classification_problem(x,y)
                );


611
612
613
            typedef matrix<scalar_type,0,1> w_type;
            w_type w;

Davis King's avatar
Davis King committed
614
615
616
            svm_objective = solver(
                make_oca_problem_c_svm<w_type>(Cpos, Cneg, x, y, verbose, eps), 
                w);
617
618
619
620
621

            // put the solution into a decision function and then return it
            decision_function<kernel_type> df;
            df.b = static_cast<scalar_type>(w(w.size()-1));
            df.basis_vectors.set_size(1);
622
623
            // Copy the plane normal into the output basis vector.  The output vector might be a
            // sparse vector container so we need to use this special kind of copy to handle that case.
624
625
626
627
            // As an aside, the reason for using num_dimensions_in_samples() and not just w.size()-1 is because
            // doing it this way avoids an inane warning from gcc that can occur in some cases.
            const long out_size = num_dimensions_in_samples(x);
            sparse_vector::assign_dense_to_sparse(df.basis_vectors(0), matrix_cast<scalar_type>(colm(w, 0, out_size)));
628
629
630
631
632
633
634
635
636
            df.alpha.set_size(1);
            df.alpha(0) = 1;

            return df;
        }
        
        scalar_type Cpos;
        scalar_type Cneg;
        oca solver;
Davis King's avatar
Davis King committed
637
638
        scalar_type eps;
        bool verbose;
639
640
641
642
643
644
645
646
647
648
649
    }; 

// ----------------------------------------------------------------------------------------

}

// ----------------------------------------------------------------------------------------


#endif // DLIB_OCA_PROBLeM_SVM_C_H__