svm_c_linear_trainer.h 18.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// Copyright (C) 2010  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SVM_C_LiNEAR_TRAINER_H__
#define DLIB_SVM_C_LiNEAR_TRAINER_H__

#include "svm_c_linear_trainer_abstract.h"
#include "../algs.h"
#include "../optimization.h"
#include "../matrix.h"
#include "function.h"
#include "kernel.h"
#include <iostream>
#include <vector>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename matrix_type, 
        typename in_sample_vector_type,
        typename in_scalar_vector_type
        >
    class oca_problem_c_svm : public oca_problem<matrix_type >
    {
    public:
        /*
            This class is used as part of the implementation of the svm_c_linear_trainer
            defined towards the end of this file.


            The bias parameter is dealt with by imagining that each sample vector has -1
            as its last element.
        */

        typedef typename matrix_type::type scalar_type;

        oca_problem_c_svm(
            const scalar_type C_pos,
            const scalar_type C_neg,
            const in_sample_vector_type& samples_,
            const in_scalar_vector_type& labels_,
Davis King's avatar
Davis King committed
44
45
            const bool be_verbose_,
            const scalar_type eps_
46
47
48
49
50
        ) :
            samples(samples_),
            labels(labels_),
            Cpos(C_pos),
            Cneg(C_neg),
Davis King's avatar
Davis King committed
51
52
            be_verbose(be_verbose_),
            eps(eps_)
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        {
            dot_prods.resize(samples.size());
            is_first_call = true;
        }

        virtual scalar_type get_c (
        ) const 
        {
            return 1;
        }

        virtual long get_num_dimensions (
        ) const 
        {
            // plus 1 for the bias term
            return num_dimensions_in_samples(samples) + 1;
        }

71
        virtual bool optimization_status (
72
73
            scalar_type current_objective_value,
            scalar_type current_error_gap,
74
75
            unsigned long num_cutting_planes,
            unsigned long num_iterations
76
77
78
79
80
81
82
83
        ) const 
        {
            if (be_verbose)
            {
                using namespace std;
                cout << "svm objective: " << current_objective_value << endl;
                cout << "gap: " << current_error_gap << endl;
                cout << "num planes: " << num_cutting_planes << endl;
84
                cout << "iter: " << num_iterations << endl;
85
86
                cout << endl;
            }
87

Davis King's avatar
Davis King committed
88
            if (current_error_gap/current_objective_value < eps)
89
90
91
                return true;

            return false;
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
        }

        virtual bool r_has_lower_bound (
            scalar_type& lower_bound
        ) const 
        { 
            lower_bound = 0;
            return true; 
        }

        virtual void get_risk (
            matrix_type& w,
            scalar_type& risk,
            matrix_type& subgradient
        ) const 
        {
            line_search(w);

            subgradient.set_size(w.size(),1);
            subgradient = 0;
            risk = 0;


            // loop over all the samples and compute the risk and its subgradient at the current solution point w
            for (long i = 0; i < samples.size(); ++i)
            {
                // multiply current SVM output for the ith sample by its label
                const scalar_type df_val = labels(i)*dot_prods[i];

                if (labels(i) > 0)
                    risk += Cpos*std::max<scalar_type>(0.0,1 - df_val);
                else
                    risk += Cneg*std::max<scalar_type>(0.0,1 - df_val);

                if (df_val < 1)
                {
                    if (labels(i) > 0)
                    {
                        subtract_from(subgradient, samples(i), Cpos);

                        subgradient(subgradient.size()-1) += Cpos;
                    }
                    else
                    {
                        add_to(subgradient, samples(i), Cneg);

                        subgradient(subgradient.size()-1) -= Cneg;
                    }
                }
            }

            scalar_type scale = 1.0/samples.size();

            risk *= scale;
            subgradient = scale*subgradient;
        }

    private:

    // -----------------------------------------------------
    // -----------------------------------------------------

        // The next few functions are overloads to handle both dense and sparse vectors
        template <typename EXP>
        inline void add_to (
            matrix_type& subgradient,
            const matrix_exp<EXP>& sample,
            const scalar_type& C
        ) const
        {
            for (long r = 0; r < sample.size(); ++r)
                subgradient(r) += C*sample(r);
        }

        template <typename T>
        inline typename disable_if<is_matrix<T> >::type add_to (
            matrix_type& subgradient,
            const T& sample,
            const scalar_type& C
        ) const
        {
            for (unsigned long i = 0; i < sample.size(); ++i)
                subgradient(sample[i].first) += C*sample[i].second;
        }

        template <typename EXP>
        inline void subtract_from (
            matrix_type& subgradient,
            const matrix_exp<EXP>& sample,
            const scalar_type& C
        ) const
        {
            for (long r = 0; r < sample.size(); ++r)
                subgradient(r) -= C*sample(r);
        }

        template <typename T>
        inline typename disable_if<is_matrix<T> >::type subtract_from (
            matrix_type& subgradient,
            const T& sample,
            const scalar_type& C
        ) const
        {
            for (unsigned long i = 0; i < sample.size(); ++i)
                subgradient(sample[i].first) -= C*sample[i].second;
        }

        template <typename EXP>
        scalar_type dot_helper (
            const matrix_type& w,
            const matrix_exp<EXP>& sample
        ) const
        {
            return dot(colm(w,0,w.size()-1), sample);
        }

        template <typename T>
        typename disable_if<is_matrix<T>,scalar_type >::type dot_helper (
            const matrix_type& w,
            const T& sample
        ) const
        {
            // compute a dot product between a dense column vector and a sparse vector
            scalar_type temp = 0;
            for (unsigned long i = 0; i < sample.size(); ++i)
                temp += w(sample[i].first) * sample[i].second;
        }

        template <typename T>
        typename enable_if<is_matrix<typename T::type>,unsigned long>::type num_dimensions_in_samples (
            const T& samples
        ) const
        {
            if (samples.size() > 0)
                return samples(0).size();
            else
                return 0;
        }

        template <typename T>
        typename disable_if<is_matrix<typename T::type>,unsigned long>::type num_dimensions_in_samples (
            const T& samples
        ) const
        /*!
            T must be a sparse vector with an integral key type
        !*/
        {
            // these should be sparse samples so look over all them to find the max dimension.
            unsigned long max_dim = 0;
            for (long i = 0; i < samples.size(); ++i)
            {
                if (samples(i).size() > 0)
                    max_dim = std::max<unsigned long>(max_dim, samples(i).back().first + 1);
            }

            return max_dim;
        }
        
    // -----------------------------------------------------
    // -----------------------------------------------------

        void line_search (
            matrix_type& w
        ) const
        /*!
            ensures
                - does a line search to find a better w
                - for all i: #dot_prods[i] == dot(colm(#w,0,w.size()-1), samples(i)) - #w(w.size()-1)
        !*/
        {
            const scalar_type mu = 0.1;

            for (long i = 0; i < samples.size(); ++i)
                dot_prods[i] = dot_helper(w,samples(i)) - w(w.size()-1);


            if (is_first_call)
            {
                is_first_call = false;
                best_so_far = w;
                dot_prods_best = dot_prods;
            }
            else
            {
                // do line search going from best_so_far to w.  Store results in w.  
                // Here we use the line search algorithm presented in section 3.1.1 of Franc and Sonnenburg.

                const scalar_type A0 = length_squared(best_so_far - w);
                const scalar_type B0 = dot(best_so_far, w - best_so_far);

                const scalar_type scale_pos = (get_c()*Cpos)/samples.size();
                const scalar_type scale_neg = (get_c()*Cneg)/samples.size();

                ks.clear();
                ks.reserve(samples.size());

                scalar_type f0 = B0;
                for (long i = 0; i < samples.size(); ++i)
                {
                    const scalar_type& scale = (labels(i)>0) ? scale_pos : scale_neg;

                    const scalar_type B = scale*labels(i) * ( dot_prods_best[i] - dot_prods[i]);
                    const scalar_type C = scale*(1 - labels(i)* dot_prods_best[i]);
                    // Note that if B is 0 then it doesn't matter what k is set to.  So 0 is fine.
                    scalar_type k = 0;
                    if (B != 0)
                        k = -C/B;

                    if (k > 0)
                        ks.push_back(helper(k, std::abs(B)));

                    if ( (B < 0 && k > 0) || (B > 0 && k <= 0) )
                        f0 += B;
                }

                // ks.size() == 0 shouldn't happen but check anyway
                if (f0 >= 0 || ks.size() == 0)
                {
                    // getting here means that we aren't searching in a descent direction.  So don't
                    // move the best_so_far position.
                }
                else
                {
                    std::sort(ks.begin(), ks.end());

                    // figure out where f0 goes positive.
                    scalar_type opt_k = 1;
                    for (unsigned long i = 0; i < ks.size(); ++i)
                    {
                        f0 += ks[i].B;
                        if (f0 + A0*ks[i].k >= 0)
                        {
                            opt_k = ks[i].k;
                            break;
                        }
                    }

                    // take the step suggested by the line search
                    best_so_far = (1-opt_k)*best_so_far + opt_k*w;

                    // update best_so_far dot products
                    for (unsigned long i = 0; i < dot_prods_best.size(); ++i)
                        dot_prods_best[i] = (1-opt_k)*dot_prods_best[i] + opt_k*dot_prods[i];
                }

                // Put the best_so_far point into w but also take a little bit of w as well.  We do
                // this since it is possible that some steps won't advance the best_so_far point. 
                // So this ensures we always make some progress each iteration.
                w = (1-mu)*best_so_far + mu*w;

                // update dot products
                for (unsigned long i = 0; i < dot_prods.size(); ++i)
                    dot_prods[i] = (1-mu)*dot_prods_best[i] + mu*dot_prods[i];
            }
        }

        struct helper
        {
            helper(scalar_type k_, scalar_type B_) : k(k_), B(B_) {}
            scalar_type k;
            scalar_type B;

            bool operator< (const helper& item) const { return k < item.k; }
        };

        mutable std::vector<helper> ks;

        mutable bool is_first_call;
        mutable std::vector<scalar_type> dot_prods;

        mutable matrix_type best_so_far;  // best w seen so far
        mutable std::vector<scalar_type> dot_prods_best; // dot products between best_so_far and samples


        const in_sample_vector_type& samples;
        const in_scalar_vector_type& labels;
        const scalar_type Cpos;
        const scalar_type Cneg;

Davis King's avatar
Davis King committed
371
372
        const bool be_verbose;
        const scalar_type eps;
373
374
    };

Davis King's avatar
Davis King committed
375
// ----------------------------------------------------------------------------------------
376
377
378
379
380
381
382
383
384
385
386
387

    template <
        typename matrix_type, 
        typename in_sample_vector_type,
        typename in_scalar_vector_type,
        typename scalar_type
        >
    oca_problem_c_svm<matrix_type, in_sample_vector_type, in_scalar_vector_type> make_oca_problem_c_svm (
        const scalar_type C_pos,
        const scalar_type C_neg,
        const in_sample_vector_type& samples,
        const in_scalar_vector_type& labels,
Davis King's avatar
Davis King committed
388
389
        const bool be_verbose,
        const scalar_type eps
390
391
    )
    {
Davis King's avatar
Davis King committed
392
        return oca_problem_c_svm<matrix_type, in_sample_vector_type, in_scalar_vector_type>(C_pos, C_neg, samples, labels, be_verbose, eps);
393
    }
Davis King's avatar
Davis King committed
394

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// ----------------------------------------------------------------------------------------

    template <
        typename K 
        >
    class svm_c_linear_trainer
    {

    public:
        typedef K kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        svm_c_linear_trainer (
        )
        {
            Cpos = 1;
            Cneg = 1;
Davis King's avatar
Davis King committed
415
416
            verbose = false;
            eps = 0.001;
417
418
419
420
421
422
        }

        explicit svm_c_linear_trainer (
            const scalar_type& C 
        )
        {
Davis King's avatar
Davis King committed
423
424
425
426
427
428
429
430
            // make sure requires clause is not broken
            DLIB_ASSERT(C > 0,
                "\t svm_c_linear_trainer::svm_c_linear_trainer()"
                << "\n\t C must be greater than 0"
                << "\n\t C:    " << C 
                << "\n\t this: " << this
                );

431
432
433
434
            Cpos = C;
            Cneg = C;
        }

Davis King's avatar
Davis King committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
        void set_epsilon (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\t void svm_c_linear_trainer::set_epsilon()"
                << "\n\t eps_ must be greater than 0"
                << "\n\t eps_: " << eps_ 
                << "\n\t this: " << this
                );

            eps = eps_;
        }

        const scalar_type get_epsilon (
        ) const { return eps; }

        void be_verbose (
        )
        {
            verbose = true;
        }

        void be_quiet (
        )
        {
            verbose = false;
        }

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        void set_oca (
            const oca& item
        )
        {
            solver = item;
        }

        const oca get_oca (
        ) const
        {
            return solver;
        }

        const kernel_type get_kernel (
        ) const
        {
            return kernel_type();
        }

        void set_c (
            scalar_type C 
        )
        {
Davis King's avatar
Davis King committed
488
489
490
491
492
493
494
495
            // make sure requires clause is not broken
            DLIB_ASSERT(C > 0,
                "\t void svm_c_linear_trainer::set_c()"
                << "\n\t C must be greater than 0"
                << "\n\t C:    " << C 
                << "\n\t this: " << this
                );

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
            Cpos = C;
            Cneg = C;
        }

        const scalar_type get_c_class1 (
        ) const
        {
            return Cpos;
        }

        const scalar_type get_c_class2 (
        ) const
        {
            return Cneg;
        }

        void set_c_class1 (
            scalar_type C
        )
        {
Davis King's avatar
Davis King committed
516
517
518
519
520
521
522
523
            // make sure requires clause is not broken
            DLIB_ASSERT(C > 0,
                "\t void svm_c_linear_trainer::set_c_class1()"
                << "\n\t C must be greater than 0"
                << "\n\t C:    " << C 
                << "\n\t this: " << this
                );

524
525
526
527
528
529
530
            Cpos = C;
        }

        void set_c_class2 (
            scalar_type C
        )
        {
Davis King's avatar
Davis King committed
531
532
533
534
535
536
537
538
            // make sure requires clause is not broken
            DLIB_ASSERT(C > 0,
                "\t void svm_c_linear_trainer::set_c_class2()"
                << "\n\t C must be greater than 0"
                << "\n\t C:    " << C 
                << "\n\t this: " << this
                );

539
540
541
542
543
544
545
546
547
548
549
550
            Cneg = C;
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
Davis King's avatar
Davis King committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
            scalar_type obj;
            return do_train(vector_to_matrix(x),vector_to_matrix(y),obj);
        }


        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y,
            scalar_type& svm_objective
        ) const
        {
            return do_train(vector_to_matrix(x),vector_to_matrix(y),svm_objective);
        }

    private:

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y,
            scalar_type& svm_objective
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(is_binary_classification_problem(x,y) == true,
                "\t decision_function svm_c_linear_trainer::train(x,y)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t x.nr(): " << x.nr() 
                << "\n\t y.nr(): " << y.nr() 
                << "\n\t x.nc(): " << x.nc() 
                << "\n\t y.nc(): " << y.nc() 
                << "\n\t is_binary_classification_problem(x,y): " << is_binary_classification_problem(x,y)
                );


593
594
595
            typedef matrix<scalar_type,0,1> w_type;
            w_type w;

Davis King's avatar
Davis King committed
596
597
598
            svm_objective = solver(
                make_oca_problem_c_svm<w_type>(Cpos, Cneg, x, y, verbose, eps), 
                w);
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613

            // put the solution into a decision function and then return it
            decision_function<kernel_type> df;
            df.b = static_cast<scalar_type>(w(w.size()-1));
            df.basis_vectors.set_size(1);
            df.basis_vectors(0) = matrix_cast<scalar_type>(colm(w, 0, w.size()-1));
            df.alpha.set_size(1);
            df.alpha(0) = 1;

            return df;
        }
        
        scalar_type Cpos;
        scalar_type Cneg;
        oca solver;
Davis King's avatar
Davis King committed
614
615
        scalar_type eps;
        bool verbose;
616
617
618
619
620
621
622
623
624
625
626
    }; 

// ----------------------------------------------------------------------------------------

}

// ----------------------------------------------------------------------------------------


#endif // DLIB_OCA_PROBLeM_SVM_C_H__