"git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "23ca7e7cd25589fc421fc95b564d83ebab06ece7"
sequence_segmenter.cpp 20.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14

#include <boost/python.hpp>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include "serialize_pickle.h"
#include <dlib/svm_threaded.h>
#include "pyassert.h"
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
#include <boost/python/args.hpp>

using namespace dlib;
using namespace std;
using namespace boost::python;

15
typedef matrix<double,0,1> dense_vect; 
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
typedef std::vector<std::pair<unsigned long, unsigned long> > ranges;

// ----------------------------------------------------------------------------------------

template <typename samp_type, bool BIO, bool high_order, bool nonnegative>
class segmenter_feature_extractor
{

public:
    typedef std::vector<samp_type> sequence_type;
    const static bool use_BIO_model = BIO;
    const static bool use_high_order_features = high_order;
    const static bool allow_negative_weights = nonnegative;


    unsigned long _num_features;
    unsigned long _window_size;

    segmenter_feature_extractor(
36
    ) : _num_features(1), _window_size(1) {}
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

    segmenter_feature_extractor(
        unsigned long _num_features_,
        unsigned long _window_size_
    ) : _num_features(_num_features_), _window_size(_window_size_) {}

    unsigned long num_features(
    ) const { return _num_features; }

    unsigned long window_size(
    ) const {return _window_size; }

    template <typename feature_setter>
    void get_features (
        feature_setter& set_feature,
52
        const std::vector<dense_vect>& x,
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        unsigned long position
    ) const
    {
        for (long i = 0; i < x[position].size(); ++i)
        {
            set_feature(i, x[position](i));
        }
    }

    template <typename feature_setter>
    void get_features (
        feature_setter& set_feature,
        const std::vector<sparse_vect>& x,
        unsigned long position
    ) const
    {
        for (long i = 0; i < x[position].size(); ++i)
        {
            set_feature(x[position][i].first, x[position][i].second);
        }
    }

    friend void serialize(const segmenter_feature_extractor& item, std::ostream& out)
    {
        dlib::serialize(item._num_features, out);
        dlib::serialize(item._window_size, out);
    }
    friend void deserialize(segmenter_feature_extractor& item, std::istream& in)
    {
        dlib::deserialize(item._num_features, in);
        dlib::deserialize(item._window_size, in);
    }
};

// ----------------------------------------------------------------------------------------

struct segmenter_type
{
91
92
93
94
95
96
97
98
99
    /*!
        WHAT THIS OBJECT REPRESENTS
            This the object that python will use directly to represent a
            sequence_segmenter.  All it does is contain all the possible template
            instantiations of a sequence_segmenter and invoke the right one depending on
            the mode variable. 
    !*/

    segmenter_type() : mode(-1)
100
101
    { }

102
103
    ranges segment_sequence_dense (
        const std::vector<dense_vect>& x
104
105
    ) const 
    {
106
107
108
109
110
111
112
113
114
115
116
117
        switch (mode)
        {
            case 0: return segmenter0(x);
            case 1: return segmenter1(x);
            case 2: return segmenter2(x);
            case 3: return segmenter3(x);
            case 4: return segmenter4(x);
            case 5: return segmenter5(x);
            case 6: return segmenter6(x);
            case 7: return segmenter7(x);
            default: throw dlib::error("Invalid mode");
        }
118
119
    }

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    ranges segment_sequence_sparse (
        const std::vector<sparse_vect>& x
    ) const 
    {
        switch (mode)
        {
            case 8: return segmenter8(x);
            case 9: return segmenter9(x);
            case 10: return segmenter10(x);
            case 11: return segmenter11(x);
            case 12: return segmenter12(x);
            case 13: return segmenter13(x);
            case 14: return segmenter14(x);
            case 15: return segmenter15(x);
            default: throw dlib::error("Invalid mode");
        }
    }

    const matrix<double,0,1> get_weights() 
139
140
141
142
143
144
145
146
147
148
149
    { 
        switch(mode)
        {
            case 0: return segmenter0.get_weights(); 
            case 1: return segmenter1.get_weights(); 
            case 2: return segmenter2.get_weights(); 
            case 3: return segmenter3.get_weights(); 
            case 4: return segmenter4.get_weights(); 
            case 5: return segmenter5.get_weights(); 
            case 6: return segmenter6.get_weights(); 
            case 7: return segmenter7.get_weights(); 
150
151
152
153
154
155
156
157
158
159
160

            case 8: return segmenter8.get_weights(); 
            case 9: return segmenter9.get_weights(); 
            case 10: return segmenter10.get_weights(); 
            case 11: return segmenter11.get_weights(); 
            case 12: return segmenter12.get_weights(); 
            case 13: return segmenter13.get_weights(); 
            case 14: return segmenter14.get_weights(); 
            case 15: return segmenter15.get_weights(); 

            default: throw dlib::error("Invalid mode");
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        }
    }

    friend void serialize (const segmenter_type& item, std::ostream& out) 
    {
        serialize(item.mode, out);
        switch(item.mode)
        {
            case 0: serialize(item.segmenter0, out); break;
            case 1: serialize(item.segmenter1, out); break;
            case 2: serialize(item.segmenter2, out); break;
            case 3: serialize(item.segmenter3, out); break;
            case 4: serialize(item.segmenter4, out); break;
            case 5: serialize(item.segmenter5, out); break;
            case 6: serialize(item.segmenter6, out); break;
            case 7: serialize(item.segmenter7, out); break;
177
178
179
180
181
182
183
184
185
186

            case 8: serialize(item.segmenter8, out); break;
            case 9: serialize(item.segmenter9, out); break;
            case 10: serialize(item.segmenter10, out); break;
            case 11: serialize(item.segmenter11, out); break;
            case 12: serialize(item.segmenter12, out); break;
            case 13: serialize(item.segmenter13, out); break;
            case 14: serialize(item.segmenter14, out); break;
            case 15: serialize(item.segmenter15, out); break;
            default: throw dlib::error("Invalid mode");
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        }
    }
    friend void deserialize (segmenter_type& item, std::istream& in)
    {
        deserialize(item.mode, in);
        switch(item.mode)
        {
            case 0: deserialize(item.segmenter0, in); break;
            case 1: deserialize(item.segmenter1, in); break;
            case 2: deserialize(item.segmenter2, in); break;
            case 3: deserialize(item.segmenter3, in); break;
            case 4: deserialize(item.segmenter4, in); break;
            case 5: deserialize(item.segmenter5, in); break;
            case 6: deserialize(item.segmenter6, in); break;
            case 7: deserialize(item.segmenter7, in); break;
202
203
204
205
206
207
208
209
210
211

            case 8: deserialize(item.segmenter8, in); break;
            case 9: deserialize(item.segmenter9, in); break;
            case 10: deserialize(item.segmenter10, in); break;
            case 11: deserialize(item.segmenter11, in); break;
            case 12: deserialize(item.segmenter12, in); break;
            case 13: deserialize(item.segmenter13, in); break;
            case 14: deserialize(item.segmenter14, in); break;
            case 15: deserialize(item.segmenter15, in); break;
            default: throw dlib::error("Invalid mode");
212
213
214
215
216
        }
    }

    int mode;

217
218
219
220
221
222
223
224
    typedef segmenter_feature_extractor<dense_vect, false,false,false> fe0;
    typedef segmenter_feature_extractor<dense_vect, false,false,true>  fe1;
    typedef segmenter_feature_extractor<dense_vect, false,true, false> fe2;
    typedef segmenter_feature_extractor<dense_vect, false,true, true>  fe3;
    typedef segmenter_feature_extractor<dense_vect, true, false,false> fe4;
    typedef segmenter_feature_extractor<dense_vect, true, false,true>  fe5;
    typedef segmenter_feature_extractor<dense_vect, true, true, false> fe6;
    typedef segmenter_feature_extractor<dense_vect, true, true, true>  fe7;
225
226
227
228
229
230
231
232
233
    sequence_segmenter<fe0> segmenter0;
    sequence_segmenter<fe1> segmenter1;
    sequence_segmenter<fe2> segmenter2;
    sequence_segmenter<fe3> segmenter3;
    sequence_segmenter<fe4> segmenter4;
    sequence_segmenter<fe5> segmenter5;
    sequence_segmenter<fe6> segmenter6;
    sequence_segmenter<fe7> segmenter7;

234
235
236
237
238
239
240
241
    typedef segmenter_feature_extractor<sparse_vect, false,false,false> fe8;
    typedef segmenter_feature_extractor<sparse_vect, false,false,true>  fe9;
    typedef segmenter_feature_extractor<sparse_vect, false,true, false> fe10;
    typedef segmenter_feature_extractor<sparse_vect, false,true, true>  fe11;
    typedef segmenter_feature_extractor<sparse_vect, true, false,false> fe12;
    typedef segmenter_feature_extractor<sparse_vect, true, false,true>  fe13;
    typedef segmenter_feature_extractor<sparse_vect, true, true, false> fe14;
    typedef segmenter_feature_extractor<sparse_vect, true, true, true>  fe15;
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    sequence_segmenter<fe8> segmenter8;
    sequence_segmenter<fe9> segmenter9;
    sequence_segmenter<fe10> segmenter10;
    sequence_segmenter<fe11> segmenter11;
    sequence_segmenter<fe12> segmenter12;
    sequence_segmenter<fe13> segmenter13;
    sequence_segmenter<fe14> segmenter14;
    sequence_segmenter<fe15> segmenter15;
};


// ----------------------------------------------------------------------------------------

struct segmenter_params
{
    segmenter_params()
    {
        use_BIO_model = true;
        use_high_order_features = true;
        allow_negative_weights = true;
        window_size = 5;
        num_threads = 4;
        epsilon = 0.1;
        max_cache_size = 40;
266
        be_verbose = false;
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        C = 100;
    }

    bool use_BIO_model;
    bool use_high_order_features;
    bool allow_negative_weights;
    unsigned long window_size;
    unsigned long num_threads;
    double epsilon;
    unsigned long max_cache_size;
    bool be_verbose;
    double C;
};

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

string segmenter_params__str__(const segmenter_params& p)
{
    ostringstream sout;
    if (p.use_BIO_model)
        sout << "BIO,";
    else
        sout << "BILOU,";

    if (p.use_high_order_features)
        sout << "highFeats,";
    else
        sout << "lowFeats,";

    if (p.allow_negative_weights)
        sout << "signed,";
    else
        sout << "non-negative,";

    sout << "win="<<p.window_size << ",";
    sout << "threads="<<p.num_threads << ",";
    sout << "eps="<<p.epsilon << ",";
    sout << "cache="<<p.max_cache_size << ",";
    if (p.be_verbose)
        sout << "verbose,";
    else
        sout << "non-verbose,";
    sout << "C="<<p.C;
    return trim(sout.str());
}

string segmenter_params__repr__(const segmenter_params& p)
{
    ostringstream sout;
    sout << "<";
    sout << segmenter_params__str__(p);
    sout << ">";
    return sout.str();
}

void serialize ( const segmenter_params& item, std::ostream& out)
{
    serialize(item.use_BIO_model, out);
    serialize(item.use_high_order_features, out);
    serialize(item.allow_negative_weights, out);
    serialize(item.window_size, out);
    serialize(item.num_threads, out);
    serialize(item.epsilon, out);
    serialize(item.max_cache_size, out);
    serialize(item.be_verbose, out);
    serialize(item.C, out);
}

void deserialize (segmenter_params& item, std::istream& in)
{
    deserialize(item.use_BIO_model, in);
    deserialize(item.use_high_order_features, in);
    deserialize(item.allow_negative_weights, in);
    deserialize(item.window_size, in);
    deserialize(item.num_threads, in);
    deserialize(item.epsilon, in);
    deserialize(item.max_cache_size, in);
    deserialize(item.be_verbose, in);
    deserialize(item.C, in);
}

347
348
349
350
// ----------------------------------------------------------------------------------------

template <typename T>
void configure_trainer (
351
    const std::vector<std::vector<dense_vect> >& samples,
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    structural_sequence_segmentation_trainer<T>& trainer,
    const segmenter_params& params
)
{
    pyassert(samples.size() != 0, "Invalid arguments.  You must give some training sequences.");
    pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences.");
    const long dims = samples[0][0].size();

    trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size));
    trainer.set_num_threads(params.num_threads);
    trainer.set_epsilon(params.epsilon);
    trainer.set_max_cache_size(params.max_cache_size);
    trainer.set_c(params.C);
    if (params.be_verbose)
        trainer.be_verbose();
}

// ----------------------------------------------------------------------------------------

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
template <typename T>
void configure_trainer (
    const std::vector<std::vector<sparse_vect> >& samples,
    structural_sequence_segmentation_trainer<T>& trainer,
    const segmenter_params& params
)
{
    pyassert(samples.size() != 0, "Invalid arguments.  You must give some training sequences.");
    pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences.");

    unsigned long dims = 0;
    for (unsigned long i = 0; i < samples.size(); ++i)
    {
        dims = std::max(dims, max_index_plus_one(samples[i]));
    }

    trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size));
    trainer.set_num_threads(params.num_threads);
    trainer.set_epsilon(params.epsilon);
    trainer.set_max_cache_size(params.max_cache_size);
    trainer.set_c(params.C);
    if (params.be_verbose)
        trainer.be_verbose();
}

// ----------------------------------------------------------------------------------------

398
segmenter_type train_dense (
399
    const std::vector<std::vector<dense_vect> >& samples,
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    const std::vector<ranges>& segments,
    segmenter_params params
)
{
    pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");

    int mode = 0;
    if (params.use_BIO_model)
        mode = mode*2 + 1;
    else 
        mode = mode*2;
    if (params.use_high_order_features)
        mode = mode*2 + 1;
    else 
        mode = mode*2;
    if (params.allow_negative_weights)
        mode = mode*2 + 1;
    else 
        mode = mode*2;

420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
    segmenter_type res;
    res.mode = mode;
    switch(mode)
    {
        case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter0 = trainer.train(samples, segments);
                } break;
        case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter1 = trainer.train(samples, segments);
                } break;
        case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter2 = trainer.train(samples, segments);
                } break;
        case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter3 = trainer.train(samples, segments);
                } break;
        case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter4 = trainer.train(samples, segments);
                } break;
        case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter5 = trainer.train(samples, segments);
                } break;
        case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter6 = trainer.train(samples, segments);
                } break;
        case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter7 = trainer.train(samples, segments);
                } break;
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        default: throw dlib::error("Invalid mode");
    }


    return res;
}

// ----------------------------------------------------------------------------------------

segmenter_type train_sparse (
    const std::vector<std::vector<sparse_vect> >& samples,
    const std::vector<ranges>& segments,
    segmenter_params params
)
{
    pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");

    int mode = 0;
    if (params.use_BIO_model)
        mode = mode*2 + 1;
    else 
        mode = mode*2;
    if (params.use_high_order_features)
        mode = mode*2 + 1;
    else 
        mode = mode*2;
    if (params.allow_negative_weights)
        mode = mode*2 + 1;
    else 
        mode = mode*2;

    mode += 8;

    segmenter_type res;
    res.mode = mode;
    switch(mode)
    {
        case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter8 = trainer.train(samples, segments);
                } break;
        case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter9 = trainer.train(samples, segments);
                } break;
        case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter10 = trainer.train(samples, segments);
                } break;
        case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter11 = trainer.train(samples, segments);
                } break;
        case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter12 = trainer.train(samples, segments);
                } break;
        case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter13 = trainer.train(samples, segments);
                } break;
        case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter14 = trainer.train(samples, segments);
                } break;
        case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter15 = trainer.train(samples, segments);
                } break;
        default: throw dlib::error("Invalid mode");
527
528
529
530
531
532
533
534
535
536
537
538
539
    }


    return res;
}

// ----------------------------------------------------------------------------------------

void bind_sequence_segmenter()
{
    class_<segmenter_params>("segmenter_params",
"This class is used to define all the optional parameters to the    \n\
train_sequence_segmenter() routine.   ")
540
541
542
543
544
545
546
547
548
549
550
        .def_readwrite("use_BIO_model", &segmenter_params::use_BIO_model)
        .def_readwrite("use_high_order_features", &segmenter_params::use_high_order_features)
        .def_readwrite("allow_negative_weights", &segmenter_params::allow_negative_weights)
        .def_readwrite("window_size", &segmenter_params::window_size)
        .def_readwrite("num_threads", &segmenter_params::num_threads)
        .def_readwrite("epsilon", &segmenter_params::epsilon)
        .def_readwrite("max_cache_size", &segmenter_params::max_cache_size)
        .def_readwrite("C", &segmenter_params::C, "SVM C parameter")
        .def("__repr__",&segmenter_params__repr__)
        .def("__str__",&segmenter_params__str__)
        .def_pickle(serialize_pickle<segmenter_params>());
551
552

    class_<segmenter_type> ("segmenter_type")
553
554
555
        .def("segment_sequence", &segmenter_type::segment_sequence_dense)
        .def("segment_sequence", &segmenter_type::segment_sequence_sparse)
        .def_readonly("weights", &segmenter_type::get_weights)
556
557
558
559
        .def_pickle(serialize_pickle<segmenter_type>());

    using boost::python::arg;
    def("train_sequence_segmenter", train_dense, (arg("samples"), arg("segments"), arg("params")=segmenter_params()));
560
    def("train_sequence_segmenter", train_sparse, (arg("samples"), arg("segments"), arg("params")=segmenter_params()));
561
562
563
564
565
}