sequence_segmenter.cpp 11.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

#include <boost/python.hpp>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include "serialize_pickle.h"
#include <dlib/svm_threaded.h>
#include "pyassert.h"
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
#include <boost/python/args.hpp>

using namespace dlib;
using namespace std;
using namespace boost::python;

typedef matrix<double,0,1> sample_type; 
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
typedef std::vector<std::pair<unsigned long, unsigned long> > ranges;

// ----------------------------------------------------------------------------------------

template <typename samp_type, bool BIO, bool high_order, bool nonnegative>
class segmenter_feature_extractor
{

public:
    typedef std::vector<samp_type> sequence_type;
    const static bool use_BIO_model = BIO;
    const static bool use_high_order_features = high_order;
    const static bool allow_negative_weights = nonnegative;


    unsigned long _num_features;
    unsigned long _window_size;

    segmenter_feature_extractor(
    ) : _num_features(0), _window_size(0) {}

    segmenter_feature_extractor(
        unsigned long _num_features_,
        unsigned long _window_size_
    ) : _num_features(_num_features_), _window_size(_window_size_) {}

    unsigned long num_features(
    ) const { return _num_features; }

    unsigned long window_size(
    ) const {return _window_size; }

    template <typename feature_setter>
    void get_features (
        feature_setter& set_feature,
        const std::vector<sample_type>& x,
        unsigned long position
    ) const
    {
        for (long i = 0; i < x[position].size(); ++i)
        {
            set_feature(i, x[position](i));
        }
    }

    template <typename feature_setter>
    void get_features (
        feature_setter& set_feature,
        const std::vector<sparse_vect>& x,
        unsigned long position
    ) const
    {
        for (long i = 0; i < x[position].size(); ++i)
        {
            set_feature(x[position][i].first, x[position][i].second);
        }
    }

    friend void serialize(const segmenter_feature_extractor& item, std::ostream& out)
    {
        dlib::serialize(item._num_features, out);
        dlib::serialize(item._window_size, out);
    }
    friend void deserialize(segmenter_feature_extractor& item, std::istream& in)
    {
        dlib::deserialize(item._num_features, in);
        dlib::deserialize(item._window_size, in);
    }
};

// ----------------------------------------------------------------------------------------

struct segmenter_type
{
    segmenter_type() : mode(0)
    { }

    ranges segment_sequence (
        const std::vector<sample_type>& x
    ) const 
    {
        return ranges();
    }

    const matrix<double,0,1>& get_weights() 
    { 
        switch(mode)
        {
            case 0: return segmenter0.get_weights(); 
            case 1: return segmenter1.get_weights(); 
            case 2: return segmenter2.get_weights(); 
            case 3: return segmenter3.get_weights(); 
            case 4: return segmenter4.get_weights(); 
            case 5: return segmenter5.get_weights(); 
            case 6: return segmenter6.get_weights(); 
            case 7: return segmenter7.get_weights(); 
        }
    }

    friend void serialize (const segmenter_type& item, std::ostream& out) 
    {
        serialize(item.mode, out);
        switch(item.mode)
        {
            case 0: serialize(item.segmenter0, out); break;
            case 1: serialize(item.segmenter1, out); break;
            case 2: serialize(item.segmenter2, out); break;
            case 3: serialize(item.segmenter3, out); break;
            case 4: serialize(item.segmenter4, out); break;
            case 5: serialize(item.segmenter5, out); break;
            case 6: serialize(item.segmenter6, out); break;
            case 7: serialize(item.segmenter7, out); break;
        }
    }
    friend void deserialize (segmenter_type& item, std::istream& in)
    {
        deserialize(item.mode, in);
        switch(item.mode)
        {
            case 0: deserialize(item.segmenter0, in); break;
            case 1: deserialize(item.segmenter1, in); break;
            case 2: deserialize(item.segmenter2, in); break;
            case 3: deserialize(item.segmenter3, in); break;
            case 4: deserialize(item.segmenter4, in); break;
            case 5: deserialize(item.segmenter5, in); break;
            case 6: deserialize(item.segmenter6, in); break;
            case 7: deserialize(item.segmenter7, in); break;
        }
    }

    int mode;

    typedef segmenter_feature_extractor<sample_type, true, true, true>  fe0;
    typedef segmenter_feature_extractor<sample_type, true, true, false> fe1;
    typedef segmenter_feature_extractor<sample_type, true, false,true>  fe2;
    typedef segmenter_feature_extractor<sample_type, true, false,false> fe3;
    typedef segmenter_feature_extractor<sample_type, false,true, true>  fe4;
    typedef segmenter_feature_extractor<sample_type, false,true, false> fe5;
    typedef segmenter_feature_extractor<sample_type, false,false,true>  fe6;
    typedef segmenter_feature_extractor<sample_type, false,false,false> fe7;
    sequence_segmenter<fe0> segmenter0;
    sequence_segmenter<fe1> segmenter1;
    sequence_segmenter<fe2> segmenter2;
    sequence_segmenter<fe3> segmenter3;
    sequence_segmenter<fe4> segmenter4;
    sequence_segmenter<fe5> segmenter5;
    sequence_segmenter<fe6> segmenter6;
    sequence_segmenter<fe7> segmenter7;

    typedef segmenter_feature_extractor<sparse_vect, true, true, true>  fe8;
    typedef segmenter_feature_extractor<sparse_vect, true, true, false> fe9;
    typedef segmenter_feature_extractor<sparse_vect, true, false,true>  fe10;
    typedef segmenter_feature_extractor<sparse_vect, true, false,false> fe11;
    typedef segmenter_feature_extractor<sparse_vect, false,true, true>  fe12;
    typedef segmenter_feature_extractor<sparse_vect, false,true, false> fe13;
    typedef segmenter_feature_extractor<sparse_vect, false,false,true>  fe14;
    typedef segmenter_feature_extractor<sparse_vect, false,false,false> fe15;
    sequence_segmenter<fe8> segmenter8;
    sequence_segmenter<fe9> segmenter9;
    sequence_segmenter<fe10> segmenter10;
    sequence_segmenter<fe11> segmenter11;
    sequence_segmenter<fe12> segmenter12;
    sequence_segmenter<fe13> segmenter13;
    sequence_segmenter<fe14> segmenter14;
    sequence_segmenter<fe15> segmenter15;
};


// ----------------------------------------------------------------------------------------

struct segmenter_params
{
    segmenter_params()
    {
        use_BIO_model = true;
        use_high_order_features = true;
        allow_negative_weights = true;
        window_size = 5;
        num_threads = 4;
        epsilon = 0.1;
        max_cache_size = 40;
        C = 100;
    }

    bool use_BIO_model;
    bool use_high_order_features;
    bool allow_negative_weights;
    unsigned long window_size;
    unsigned long num_threads;
    double epsilon;
    unsigned long max_cache_size;
    bool be_verbose;
    double C;
};

// ----------------------------------------------------------------------------------------

template <typename T>
void configure_trainer (
    const std::vector<std::vector<sample_type> >& samples,
    structural_sequence_segmentation_trainer<T>& trainer,
    const segmenter_params& params
)
{
    pyassert(samples.size() != 0, "Invalid arguments.  You must give some training sequences.");
    pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences.");
    const long dims = samples[0][0].size();

    trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size));
    trainer.set_num_threads(params.num_threads);
    trainer.set_epsilon(params.epsilon);
    trainer.set_max_cache_size(params.max_cache_size);
    trainer.set_c(params.C);
    if (params.be_verbose)
        trainer.be_verbose();
}

// ----------------------------------------------------------------------------------------

segmenter_type train_dense (
    const std::vector<std::vector<sample_type> >& samples,
    const std::vector<ranges>& segments,
    segmenter_params params
)
{
    pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");

    int mode = 0;
    if (params.use_BIO_model)
        mode = mode*2 + 1;
    else 
        mode = mode*2;
    if (params.use_high_order_features)
        mode = mode*2 + 1;
    else 
        mode = mode*2;
    if (params.allow_negative_weights)
        mode = mode*2 + 1;
    else 
        mode = mode*2;

    segmenter_type res;
    res.mode = mode;
    switch(mode)
    {
        case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter0 = trainer.train(samples, segments);
                } break;
        case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter1 = trainer.train(samples, segments);
                } break;
        case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter2 = trainer.train(samples, segments);
                } break;
        case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter3 = trainer.train(samples, segments);
                } break;
        case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter4 = trainer.train(samples, segments);
                } break;
        case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter5 = trainer.train(samples, segments);
                } break;
        case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter6 = trainer.train(samples, segments);
                } break;
        case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer;
                  configure_trainer(samples, trainer, params);
                  res.segmenter7 = trainer.train(samples, segments);
                } break;
    }


    return res;
}

// ----------------------------------------------------------------------------------------

void bind_sequence_segmenter()
{
    class_<segmenter_params>("segmenter_params",
"This class is used to define all the optional parameters to the    \n\
train_sequence_segmenter() routine.   ")
        .add_property("use_BIO_model", &segmenter_params::use_BIO_model)
        .add_property("use_high_order_features", &segmenter_params::use_high_order_features)
        .add_property("allow_negative_weights", &segmenter_params::allow_negative_weights)
        .add_property("window_size", &segmenter_params::window_size)
        .add_property("num_threads", &segmenter_params::num_threads)
        .add_property("epsilon", &segmenter_params::epsilon)
        .add_property("max_cache_size", &segmenter_params::max_cache_size)
        .add_property("C", &segmenter_params::C);

    class_<segmenter_type> ("segmenter_type")
        .def("segment_sequence", &segmenter_type::segment_sequence)
        .def_pickle(serialize_pickle<segmenter_type>());

    using boost::python::arg;
    def("train_sequence_segmenter", train_dense, (arg("samples"), arg("segments"), arg("params")=segmenter_params()));
}