optimization_ex.cpp 14.5 KB
Newer Older
1
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
Davis King's avatar
Davis King committed
2
3
/*

4
    This is an example illustrating the use the general purpose non-linear
5
    optimization routines from the dlib C++ Library.
Davis King's avatar
Davis King committed
6

7
8
9
10
    The library provides implementations of many popular algorithms such as L-BFGS
    and BOBYQA.  These algorithms allow you to find the minimum or maximum of a
    function of many input variables.  This example walks though a few of the ways
    you might put these routines to use.
Davis King's avatar
Davis King committed
11
12
13
14

*/


15
#include <dlib/optimization.h>
16
#include <dlib/global_optimization.h>
Davis King's avatar
Davis King committed
17
18
19
20
21
22
23
24
#include <iostream>


using namespace std;
using namespace dlib;

// ----------------------------------------------------------------------------------------

25
26
// In dlib, most of the general purpose solvers optimize functions that take a
// column vector as input and return a double.  So here we make a typedef for a
27
28
// variable length column vector of doubles.  This is the type we will use to
// represent the input to our objective functions which we will be minimizing.
Davis King's avatar
Davis King committed
29
30
31
32
33
34
35
typedef matrix<double,0,1> column_vector;

// ----------------------------------------------------------------------------------------
// Below we create a few functions.  When you get down into main() you will see that
// we can use the optimization algorithms to find the minimums of these functions.
// ----------------------------------------------------------------------------------------

36
double rosen (const column_vector& m)
Davis King's avatar
Davis King committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
/*
    This function computes what is known as Rosenbrock's function.  It is 
    a function of two input variables and has a global minimum at (1,1).
    So when we use this function to test out the optimization algorithms
    we will see that the minimum found is indeed at the point (1,1). 
*/
{
    const double x = m(0); 
    const double y = m(1);

    // compute Rosenbrock's function and return the result
    return 100.0*pow(y - x*x,2) + pow(1 - x,2);
}

// This is a helper function used while optimizing the rosen() function.  
52
const column_vector rosen_derivative (const column_vector& m)
Davis King's avatar
Davis King committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*!
    ensures
        - returns the gradient vector for the rosen function
!*/
{
    const double x = m(0);
    const double y = m(1);

    // make us a column vector of length 2
    column_vector res(2);

    // now compute the gradient vector
    res(0) = -400*x*(y-x*x) - 2*(1-x); // derivative of rosen() with respect to x
    res(1) = 200*(y-x*x);              // derivative of rosen() with respect to y
    return res;
}

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
// This function computes the Hessian matrix for the rosen() fuction.  This is
// the matrix of second derivatives.
matrix<double> rosen_hessian (const column_vector& m)
{
    const double x = m(0);
    const double y = m(1);

    matrix<double> res(2,2);

    // now compute the second derivatives 
    res(0,0) = 1200*x*x - 400*y + 2; // second derivative with respect to x
    res(1,0) = res(0,1) = -400*x;   // derivative with respect to x and y
    res(1,1) = 200;                 // second derivative with respect to y
    return res;
}

Davis King's avatar
Davis King committed
86
87
// ----------------------------------------------------------------------------------------

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
class rosen_model 
{
    /*!
        This object is a "function model" which can be used with the
        find_min_trust_region() routine.  
    !*/

public:
    typedef ::column_vector column_vector;
    typedef matrix<double> general_matrix;

    double operator() (
        const column_vector& x
    ) const { return rosen(x); }

    void get_derivative_and_hessian (
        const column_vector& x,
        column_vector& der,
        general_matrix& hess
    ) const
    {
        der = rosen_derivative(x);
        hess = rosen_hessian(x);
    }
};

// ----------------------------------------------------------------------------------------

Davis King's avatar
Davis King committed
116
117
int main()
{
118
119
120
121
122
123
124
125
    try
    {


        // Set the starting point to (4,8).  This is the point the optimization algorithm
        // will start out from and it will move it closer and closer to the function's 
        // minimum point.   So generally you want to try and compute a good guess that is
        // somewhat near the actual optimum value.
126
        column_vector starting_point = {4, 8};
127

128
129
130
131
132
133
134
        // The first example below finds the minimum of the rosen() function and uses the
        // analytical derivative computed by rosen_derivative().  Since it is very easy to
        // make a mistake while coding a function like rosen_derivative() it is a good idea
        // to compare your derivative function against a numerical approximation and see if
        // the results are similar.  If they are very different then you probably made a 
        // mistake.  So the first thing we do is compare the results at a test point: 
        cout << "Difference between analytic derivative and numerical approximation of derivative: " 
135
              << length(derivative(rosen)(starting_point) - rosen_derivative(starting_point)) << endl;
136
137
138


        cout << "Find the minimum of the rosen function()" << endl;
139
140
        // Now we use the find_min() function to find the minimum point.  The first argument
        // to this routine is the search strategy we want to use.  The second argument is the 
141
        // stopping strategy.  Below I'm using the objective_delta_stop_strategy which just 
142
143
144
145
146
147
148
149
150
151
152
153
        // says that the search should stop when the change in the function being optimized 
        // is small enough.

        // The other arguments to find_min() are the function to be minimized, its derivative, 
        // then the starting point, and the last is an acceptable minimum value of the rosen() 
        // function.  That is, if the algorithm finds any inputs to rosen() that gives an output 
        // value <= -1 then it will stop immediately.  Usually you supply a number smaller than 
        // the actual global minimum.  So since the smallest output of the rosen function is 0 
        // we just put -1 here which effectively causes this last argument to be disregarded.

        find_min(bfgs_search_strategy(),  // Use BFGS search algorithm
                 objective_delta_stop_strategy(1e-7), // Stop when the change in rosen() is less than 1e-7
154
                 rosen, rosen_derivative, starting_point, -1);
155
156
        // Once the function ends the starting_point vector will contain the optimum point 
        // of (1,1).
157
        cout << "rosen solution:\n" << starting_point << endl;
158
159


Davis King's avatar
Davis King committed
160
        // Now let's try doing it again with a different starting point and the version
161
162
163
        // of find_min() that doesn't require you to supply a derivative function.  
        // This version will compute a numerical approximation of the derivative since 
        // we didn't supply one to it.
164
        starting_point = {-94, 5.2};
165
166
        find_min_using_approximate_derivatives(bfgs_search_strategy(),
                                               objective_delta_stop_strategy(1e-7),
167
                                               rosen, starting_point, -1);
168
        // Again the correct minimum point is found and stored in starting_point
169
        cout << "rosen solution:\n" << starting_point << endl;
170
171
172
173
174
175
176
177


        // Here we repeat the same thing as above but this time using the L-BFGS 
        // algorithm.  L-BFGS is very similar to the BFGS algorithm, however, BFGS 
        // uses O(N^2) memory where N is the size of the starting_point vector.  
        // The L-BFGS algorithm however uses only O(N) memory.  So if you have a 
        // function of a huge number of variables the L-BFGS algorithm is probably 
        // a better choice.
178
        starting_point = {0.8, 1.3};
179
        find_min(lbfgs_search_strategy(10),  // The 10 here is basically a measure of how much memory L-BFGS will use.
180
181
                 objective_delta_stop_strategy(1e-7).be_verbose(),  // Adding be_verbose() causes a message to be 
                                                                    // printed for each iteration of optimization.
182
                 rosen, rosen_derivative, starting_point, -1);
183

Davis King's avatar
Davis King committed
184
        cout << endl << "rosen solution: \n" << starting_point << endl;
185

186
        starting_point = {-94, 5.2};
187
188
        find_min_using_approximate_derivatives(lbfgs_search_strategy(10),
                                               objective_delta_stop_strategy(1e-7),
189
                                               rosen, starting_point, -1);
190
191
192
        cout << "rosen solution: \n"<< starting_point << endl;


193

194
195
196
197
198

        // dlib also supports solving functions subject to bounds constraints on
        // the variables.  So for example, if you wanted to find the minimizer
        // of the rosen function where both input variables were in the range
        // 0.1 to 0.8 you would do it like this:
199
        starting_point = {0.1, 0.1}; // Start with a valid point inside the constraint box.
200
201
202
203
204
205
206
207
208
209
        find_min_box_constrained(lbfgs_search_strategy(10),  
                                 objective_delta_stop_strategy(1e-9),  
                                 rosen, rosen_derivative, starting_point, 0.1, 0.8);
        // Here we put the same [0.1 0.8] range constraint on each variable, however, you
        // can put different bounds on each variable by passing in column vectors of
        // constraints for the last two arguments rather than scalars.  

        cout << endl << "constrained rosen solution: \n" << starting_point << endl;

        // You can also use an approximate derivative like so:
210
        starting_point = {0.1, 0.1}; 
211
212
213
214
215
216
217
218
        find_min_box_constrained(bfgs_search_strategy(),  
                                 objective_delta_stop_strategy(1e-9),  
                                 rosen, derivative(rosen), starting_point, 0.1, 0.8);
        cout << endl << "constrained rosen solution: \n" << starting_point << endl;




219
220
        // In many cases, it is useful if we also provide second derivative information
        // to the optimizers.  Two examples of how we can do that are shown below.  
221
        starting_point = {0.8, 1.3};
222
        find_min(newton_search_strategy(rosen_hessian),
223
                 objective_delta_stop_strategy(1e-7),
224
225
                 rosen,
                 rosen_derivative,
226
227
228
229
230
231
232
                 starting_point,
                 -1);
        cout << "rosen solution: \n"<< starting_point << endl;

        // We can also use find_min_trust_region(), which is also a method which uses
        // second derivatives.  For some kinds of non-convex function it may be more
        // reliable than using a newton_search_strategy with find_min().
233
        starting_point = {0.8, 1.3};
234
235
236
237
238
239
        find_min_trust_region(objective_delta_stop_strategy(1e-7),
            rosen_model(), 
            starting_point, 
            10 // initial trust region radius
        );
        cout << "rosen solution: \n"<< starting_point << endl;
240
241
242
243
244





245
        // Next, let's try the BOBYQA algorithm.  This is a technique specially
246
        // designed to minimize a function in the absence of derivative information.  
247
248
249
250
251
252
253
254
255
        // Generally speaking, it is the method of choice if derivatives are not available
        // and the function you are optimizing is smooth and has only one local optima.  As
        // an example, consider the be_like_target function defined below:
        column_vector target = {3, 5, 1, 7};
        auto be_like_target = [&](const column_vector& x) {
            return mean(squared(x-target));
        };
        starting_point = {-4,5,99,3};
        find_min_bobyqa(be_like_target, 
256
257
258
259
260
261
262
263
                        starting_point, 
                        9,    // number of interpolation points
                        uniform_matrix<double>(4,1, -1e100),  // lower bound constraint
                        uniform_matrix<double>(4,1, 1e100),   // upper bound constraint
                        10,    // initial trust region radius
                        1e-6,  // stopping trust region radius
                        100    // max number of objective function evaluations
        );
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        cout << "be_like_target solution:\n" << starting_point << endl;





        // Finally, let's try the find_max_global() routine.  Like
        // find_max_bobyqa(), this is a technique specially designed to maximize
        // a function in the absence of derivative information.  However, it is
        // also designed to handle functions with many local optima.  Where
        // BOBYQA would get stuck at the nearest local optima, find_max_global()
        // won't.  find_max_global() uses a global optimization method based on a
        // combination of non-parametric global function modeling and BOBYQA
        // style quadratic trust region modeling to efficiently find a global
        // maximizer.  It usually does a good job with a relatively small number
        // of calls to the function being optimized.  
        // 
        // You also don't have to give it a starting point or set any parameters,
        // other than defining the bounds constraints.  This makes it the method
        // of choice for derivative free optimization in the presence of local
        // optima.  Its API also allows you to define functions that take a
        // column_vector as shown above or to explicitly use named doubles as
        // arguments, which we do here.
        auto complex_holder_table = [](double x0, double x1)
        {
            // This function is a version of the well known Holder table test
            // function, which is a function containing a bunch of local optima.
            // Here we make it even more difficult by adding more local optima
            // and also a bunch of discontinuities. 

            // add discontinuities
            double sign = 1;
            for (double j = -4; j < 9; j += 0.5)
            {
                if (j < x0 && x0 < j+0.5) 
                    x0 += sign*0.25;
                sign *= -1;
            }
            // Holder table function tilted towards 10,10 and with additional
            // high frequency terms to add more local optima.
            return std::abs(sin(x0)*cos(x1)*exp(std::abs(1-std::sqrt(x0*x0+x1*x1)/pi))) -(x0+x1)/10 - sin(x0*10)*cos(x1*10);
        };

        // To optimize this difficult function all we need to do is call
        // find_max_global()
        auto result = find_max_global(complex_holder_table, 
                        {-10,-10}, // lower bounds
                        {10,10}, // upper bounds
                        max_function_calls(300));

        cout.precision(9);
        // These cout statements will show that find_max_global() found the
        // globally optimal solution to 9 digits of precision:
        cout << "complex holder table function solution y (should be 21.9210397): " << result.y << endl;
        cout << "complex holder table function solution x:\n" << result.x << endl;
319
320
321
322
323
    }
    catch (std::exception& e)
    {
        cout << e.what() << endl;
    }
Davis King's avatar
Davis King committed
324
325
}