Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
114f677d
"git@developer.sourcefind.cn:OpenDAS/ollama.git" did not exist on "40bc4622ef837627034e7ad0d64b646c7bfbf07a"
Commit
114f677d
authored
Feb 22, 2014
by
Davis King
Browse files
Fixing grammar in comments.
parent
f9d3da11
Changes
41
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
38 additions
and
38 deletions
+38
-38
examples/bayes_net_ex.cpp
examples/bayes_net_ex.cpp
+2
-2
examples/bayes_net_from_disk_ex.cpp
examples/bayes_net_from_disk_ex.cpp
+1
-1
examples/bayes_net_gui_ex.cpp
examples/bayes_net_gui_ex.cpp
+1
-1
examples/bridge_ex.cpp
examples/bridge_ex.cpp
+2
-2
examples/config_reader_ex.cpp
examples/config_reader_ex.cpp
+1
-1
examples/custom_trainer_ex.cpp
examples/custom_trainer_ex.cpp
+2
-2
examples/empirical_kernel_map_ex.cpp
examples/empirical_kernel_map_ex.cpp
+4
-4
examples/fhog_ex.cpp
examples/fhog_ex.cpp
+1
-1
examples/fhog_object_detector_ex.cpp
examples/fhog_object_detector_ex.cpp
+2
-2
examples/graph_labeling_ex.cpp
examples/graph_labeling_ex.cpp
+2
-2
examples/gui_api_ex.cpp
examples/gui_api_ex.cpp
+5
-5
examples/image_ex.cpp
examples/image_ex.cpp
+2
-2
examples/iosockstream_ex.cpp
examples/iosockstream_ex.cpp
+1
-1
examples/kcentroid_ex.cpp
examples/kcentroid_ex.cpp
+2
-2
examples/krls_ex.cpp
examples/krls_ex.cpp
+1
-1
examples/krls_filter_ex.cpp
examples/krls_filter_ex.cpp
+1
-1
examples/krr_classification_ex.cpp
examples/krr_classification_ex.cpp
+3
-3
examples/krr_regression_ex.cpp
examples/krr_regression_ex.cpp
+1
-1
examples/least_squares_ex.cpp
examples/least_squares_ex.cpp
+3
-3
examples/linear_manifold_regularizer_ex.cpp
examples/linear_manifold_regularizer_ex.cpp
+1
-1
No files found.
examples/bayes_net_ex.cpp
View file @
114f677d
...
@@ -161,7 +161,7 @@ int main()
...
@@ -161,7 +161,7 @@ int main()
// We have now finished setting up our bayesian network. So lets compute some
// We have now finished setting up our bayesian network. So let
'
s compute some
// probability values. The first thing we will do is compute the prior probability
// probability values. The first thing we will do is compute the prior probability
// of each node in the network. To do this we will use the join tree algorithm which
// of each node in the network. To do this we will use the join tree algorithm which
// is an algorithm for performing exact inference in a bayesian network.
// is an algorithm for performing exact inference in a bayesian network.
...
@@ -198,7 +198,7 @@ int main()
...
@@ -198,7 +198,7 @@ int main()
cout
<<
"
\n\n\n
"
;
cout
<<
"
\n\n\n
"
;
// Now to make things more interesting lets say that we have discovered that the C
// Now to make things more interesting let
'
s say that we have discovered that the C
// node really has a value of 1. That is to say, we now have evidence that
// node really has a value of 1. That is to say, we now have evidence that
// C is 1. We can represent this in the network using the following two function
// C is 1. We can represent this in the network using the following two function
// calls.
// calls.
...
...
examples/bayes_net_from_disk_ex.cpp
View file @
114f677d
...
@@ -44,7 +44,7 @@ int main(int argc, char** argv)
...
@@ -44,7 +44,7 @@ int main(int argc, char** argv)
cout
<<
"Number of nodes in the network: "
<<
bn
.
number_of_nodes
()
<<
endl
;
cout
<<
"Number of nodes in the network: "
<<
bn
.
number_of_nodes
()
<<
endl
;
// Lets compute some probability values using the loaded network using the join tree (aka. Junction
// Let
'
s compute some probability values using the loaded network using the join tree (aka. Junction
// Tree) algorithm.
// Tree) algorithm.
// First we need to create an undirected graph which contains set objects at each node and
// First we need to create an undirected graph which contains set objects at each node and
...
...
examples/bayes_net_gui_ex.cpp
View file @
114f677d
...
@@ -413,7 +413,7 @@ initialize_node_cpt_if_necessary (
...
@@ -413,7 +413,7 @@ initialize_node_cpt_if_necessary (
{
{
node_type
&
node
=
graph_drawer
.
graph_node
(
index
);
node_type
&
node
=
graph_drawer
.
graph_node
(
index
);
// if the cpt for this node isn't properly filled out then lets clear it out
// if the cpt for this node isn't properly filled out then let
'
s clear it out
// and populate it with some reasonable default values
// and populate it with some reasonable default values
if
(
node_cpt_filled_out
(
graph_drawer
.
graph
(),
index
)
==
false
)
if
(
node_cpt_filled_out
(
graph_drawer
.
graph
(),
index
)
==
false
)
{
{
...
...
examples/bridge_ex.cpp
View file @
114f677d
...
@@ -103,7 +103,7 @@ void run_example_1(
...
@@ -103,7 +103,7 @@ void run_example_1(
// Now lets put some things into the out pipe
// Now let
'
s put some things into the out pipe
int
value
=
1
;
int
value
=
1
;
out
.
enqueue
(
value
);
out
.
enqueue
(
value
);
...
@@ -308,7 +308,7 @@ void run_example_4(
...
@@ -308,7 +308,7 @@ void run_example_4(
bridge_status
bs
;
bridge_status
bs
;
// Once a connection is established it will generate a status message from each bridge.
// Once a connection is established it will generate a status message from each bridge.
// Lets get those and print them.
// Let
'
s get those and print them.
b1_status
.
dequeue
(
bs
);
b1_status
.
dequeue
(
bs
);
cout
<<
"bridge 1 status: is_connected: "
<<
boolalpha
<<
bs
.
is_connected
<<
endl
;
cout
<<
"bridge 1 status: is_connected: "
<<
boolalpha
<<
bs
.
is_connected
<<
endl
;
cout
<<
"bridge 1 status: foreign_ip: "
<<
bs
.
foreign_ip
<<
endl
;
cout
<<
"bridge 1 status: foreign_ip: "
<<
bs
.
foreign_ip
<<
endl
;
...
...
examples/config_reader_ex.cpp
View file @
114f677d
...
@@ -75,7 +75,7 @@ int main()
...
@@ -75,7 +75,7 @@ int main()
// Use our recursive function to print everything in the config file.
// Use our recursive function to print everything in the config file.
print_config_reader_contents
(
cr
);
print_config_reader_contents
(
cr
);
// Now lets access some of the fields of the config file directly. You
// Now let
'
s access some of the fields of the config file directly. You
// use [] for accessing key values and .block() for accessing sub-blocks.
// use [] for accessing key values and .block() for accessing sub-blocks.
// Print out the string value assigned to key1 in the config file
// Print out the string value assigned to key1 in the config file
...
...
examples/custom_trainer_ex.cpp
View file @
114f677d
...
@@ -174,7 +174,7 @@ int main()
...
@@ -174,7 +174,7 @@ int main()
trainer
.
set_trainer
(
rbf_trainer
,
"upper_left"
,
"lower_right"
);
trainer
.
set_trainer
(
rbf_trainer
,
"upper_left"
,
"lower_right"
);
// Now lets do 5-fold cross-validation using the one_vs_one_trainer we just setup.
// Now let
'
s do 5-fold cross-validation using the one_vs_one_trainer we just setup.
// As an aside, always shuffle the order of the samples before doing cross validation.
// As an aside, always shuffle the order of the samples before doing cross validation.
// For a discussion of why this is a good idea see the svm_ex.cpp example.
// For a discussion of why this is a good idea see the svm_ex.cpp example.
randomize_samples
(
samples
,
labels
);
randomize_samples
(
samples
,
labels
);
...
@@ -201,7 +201,7 @@ int main()
...
@@ -201,7 +201,7 @@ int main()
*/
*/
// Finally, lets save our multiclass decision rule to disk. Remember that we have
// Finally, let
'
s save our multiclass decision rule to disk. Remember that we have
// to specify the types of binary decision function used inside the one_vs_one_decision_function.
// to specify the types of binary decision function used inside the one_vs_one_decision_function.
one_vs_one_decision_function
<
ovo_trainer
,
one_vs_one_decision_function
<
ovo_trainer
,
custom_decision_function
,
// This is the output of the simple_custom_trainer
custom_decision_function
,
// This is the output of the simple_custom_trainer
...
...
examples/empirical_kernel_map_ex.cpp
View file @
114f677d
...
@@ -76,7 +76,7 @@ using namespace dlib;
...
@@ -76,7 +76,7 @@ using namespace dlib;
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// First lets make a typedef for the kind of samples we will be using.
// First let
'
s make a typedef for the kind of samples we will be using.
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
// We will be using the radial_basis_kernel in this example program.
// We will be using the radial_basis_kernel in this example program.
...
@@ -213,7 +213,7 @@ void test_empirical_kernel_map (
...
@@ -213,7 +213,7 @@ void test_empirical_kernel_map (
// Now lets do something more interesting. The following loop finds the centroids
// Now let
'
s do something more interesting. The following loop finds the centroids
// of the two classes of data.
// of the two classes of data.
sample_type
class1_center
;
sample_type
class1_center
;
sample_type
class2_center
;
sample_type
class2_center
;
...
@@ -254,7 +254,7 @@ void test_empirical_kernel_map (
...
@@ -254,7 +254,7 @@ void test_empirical_kernel_map (
// Next, note that classifying a point based on its distance between two other
// Next, note that classifying a point based on its distance between two other
// points is the same thing as using the plane that lies between those two points
// points is the same thing as using the plane that lies between those two points
// as a decision boundary. So lets compute that decision plane and use it to classify
// as a decision boundary. So let
'
s compute that decision plane and use it to classify
// all the points.
// all the points.
sample_type
plane_normal_vector
=
class1_center
-
class2_center
;
sample_type
plane_normal_vector
=
class1_center
-
class2_center
;
...
@@ -291,7 +291,7 @@ void test_empirical_kernel_map (
...
@@ -291,7 +291,7 @@ void test_empirical_kernel_map (
{
{
double
side
=
dec_funct
(
samples
[
i
]);
double
side
=
dec_funct
(
samples
[
i
]);
// And lets just check that the dec_funct really does compute the same thing as the previous equation.
// And let
'
s just check that the dec_funct really does compute the same thing as the previous equation.
double
side_alternate_equation
=
dot
(
plane_normal_vector
,
projected_samples
[
i
])
-
bias
;
double
side_alternate_equation
=
dot
(
plane_normal_vector
,
projected_samples
[
i
])
-
bias
;
if
(
abs
(
side
-
side_alternate_equation
)
>
1e-14
)
if
(
abs
(
side
-
side_alternate_equation
)
>
1e-14
)
cout
<<
"dec_funct error: "
<<
abs
(
side
-
side_alternate_equation
)
<<
endl
;
cout
<<
"dec_funct error: "
<<
abs
(
side
-
side_alternate_equation
)
<<
endl
;
...
...
examples/fhog_ex.cpp
View file @
114f677d
...
@@ -55,7 +55,7 @@ int main(int argc, char** argv)
...
@@ -55,7 +55,7 @@ int main(int argc, char** argv)
cout
<<
"hog image has "
<<
hog
.
nr
()
<<
" rows and "
<<
hog
.
nc
()
<<
" columns."
<<
endl
;
cout
<<
"hog image has "
<<
hog
.
nr
()
<<
" rows and "
<<
hog
.
nc
()
<<
" columns."
<<
endl
;
// Lets see what the image and FHOG features look like.
// Let
'
s see what the image and FHOG features look like.
image_window
win
(
img
);
image_window
win
(
img
);
image_window
winhog
(
draw_fhog
(
hog
));
image_window
winhog
(
draw_fhog
(
hog
));
...
...
examples/fhog_object_detector_ex.cpp
View file @
114f677d
...
@@ -161,7 +161,7 @@ int main(int argc, char** argv)
...
@@ -161,7 +161,7 @@ int main(int argc, char** argv)
// a face.
// a face.
image_window
hogwin
(
draw_fhog
(
detector
),
"Learned fHOG detector"
);
image_window
hogwin
(
draw_fhog
(
detector
),
"Learned fHOG detector"
);
// Now for the really fun part. Lets display the testing images on the screen and
// Now for the really fun part. Let
'
s display the testing images on the screen and
// show the output of the face detector overlaid on each image. You will see that
// show the output of the face detector overlaid on each image. You will see that
// it finds all the faces without false alarming on any non-faces.
// it finds all the faces without false alarming on any non-faces.
image_window
win
;
image_window
win
;
...
@@ -191,7 +191,7 @@ int main(int argc, char** argv)
...
@@ -191,7 +191,7 @@ int main(int argc, char** argv)
// Now lets talk about some optional features of this training tool as well as some
// Now let
'
s talk about some optional features of this training tool as well as some
// important points you should understand.
// important points you should understand.
//
//
// The first thing that should be pointed out is that, since this is a sliding
// The first thing that should be pointed out is that, since this is a sliding
...
...
examples/graph_labeling_ex.cpp
View file @
114f677d
...
@@ -194,13 +194,13 @@ int main()
...
@@ -194,13 +194,13 @@ int main()
// indicate that all nodes were correctly classified.
// indicate that all nodes were correctly classified.
cout
<<
"3-fold cross-validation: "
<<
cross_validate_graph_labeling_trainer
(
trainer
,
samples
,
labels
,
3
)
<<
endl
;
cout
<<
"3-fold cross-validation: "
<<
cross_validate_graph_labeling_trainer
(
trainer
,
samples
,
labels
,
3
)
<<
endl
;
// Since the trainer is working well. Lets have it make a graph_labeler
// Since the trainer is working well. Let
'
s have it make a graph_labeler
// based on the training data.
// based on the training data.
graph_labeler
<
vector_type
>
labeler
=
trainer
.
train
(
samples
,
labels
);
graph_labeler
<
vector_type
>
labeler
=
trainer
.
train
(
samples
,
labels
);
/*
/*
Lets try the graph_labeler on a new test graph. In particular, lets
Let
'
s try the graph_labeler on a new test graph. In particular, let
'
s
use one with 5 nodes as shown below:
use one with 5 nodes as shown below:
(0 F)-----(1 T)
(0 F)-----(1 T)
...
...
examples/gui_api_ex.cpp
View file @
114f677d
...
@@ -114,7 +114,7 @@ public:
...
@@ -114,7 +114,7 @@ public:
b
.
set_pos
(
10
,
60
);
b
.
set_pos
(
10
,
60
);
b
.
set_name
(
"button"
);
b
.
set_name
(
"button"
);
// lets put the label 5 pixels below the button
// let
'
s put the label 5 pixels below the button
c
.
set_pos
(
b
.
left
(),
b
.
bottom
()
+
5
);
c
.
set_pos
(
b
.
left
(),
b
.
bottom
()
+
5
);
...
@@ -137,7 +137,7 @@ public:
...
@@ -137,7 +137,7 @@ public:
// functions or lambda functions.
// functions or lambda functions.
// Lets also make a simple menu bar.
// Let
'
s also make a simple menu bar.
// First we say how many menus we want in our menu bar. In this example we only want 1.
// First we say how many menus we want in our menu bar. In this example we only want 1.
mbar
.
set_number_of_menus
(
1
);
mbar
.
set_number_of_menus
(
1
);
// Now we set the name of our menu. The 'M' means that the M in Menu will be underlined
// Now we set the name of our menu. The 'M' means that the M in Menu will be underlined
...
@@ -147,12 +147,12 @@ public:
...
@@ -147,12 +147,12 @@ public:
// Now we add some items to the menu. Note that items in a menu are listed in the
// Now we add some items to the menu. Note that items in a menu are listed in the
// order in which they were added.
// order in which they were added.
// First lets make a menu item that does the same thing as our button does when it is clicked.
// First let
'
s make a menu item that does the same thing as our button does when it is clicked.
// Again, the 'C' means the C in Click is underlined in the menu.
// Again, the 'C' means the C in Click is underlined in the menu.
mbar
.
menu
(
0
).
add_menu_item
(
menu_item_text
(
"Click Button!"
,
*
this
,
&
win
::
on_button_clicked
,
'C'
));
mbar
.
menu
(
0
).
add_menu_item
(
menu_item_text
(
"Click Button!"
,
*
this
,
&
win
::
on_button_clicked
,
'C'
));
// lets add a separator (i.e. a horizontal separating line) to the menu
// let
'
s add a separator (i.e. a horizontal separating line) to the menu
mbar
.
menu
(
0
).
add_menu_item
(
menu_item_separator
());
mbar
.
menu
(
0
).
add_menu_item
(
menu_item_separator
());
// Now lets make a menu item that calls show_about when the user selects it.
// Now let
'
s make a menu item that calls show_about when the user selects it.
mbar
.
menu
(
0
).
add_menu_item
(
menu_item_text
(
"About"
,
*
this
,
&
win
::
show_about
,
'A'
));
mbar
.
menu
(
0
).
add_menu_item
(
menu_item_text
(
"About"
,
*
this
,
&
win
::
show_about
,
'A'
));
...
...
examples/image_ex.cpp
View file @
114f677d
...
@@ -46,7 +46,7 @@ int main(int argc, char** argv)
...
@@ -46,7 +46,7 @@ int main(int argc, char** argv)
load_image
(
img
,
argv
[
1
]);
load_image
(
img
,
argv
[
1
]);
// Now lets use some image functions. First lets blur the image a little.
// Now let
'
s use some image functions. First let
'
s blur the image a little.
array2d
<
unsigned
char
>
blurred_img
;
array2d
<
unsigned
char
>
blurred_img
;
gaussian_blur
(
img
,
blurred_img
);
gaussian_blur
(
img
,
blurred_img
);
...
@@ -58,7 +58,7 @@ int main(int argc, char** argv)
...
@@ -58,7 +58,7 @@ int main(int argc, char** argv)
// now we do the non-maximum edge suppression step so that our edges are nice and thin
// now we do the non-maximum edge suppression step so that our edges are nice and thin
suppress_non_maximum_edges
(
horz_gradient
,
vert_gradient
,
edge_image
);
suppress_non_maximum_edges
(
horz_gradient
,
vert_gradient
,
edge_image
);
// Now we would like to see what our images look like. So lets use a
// Now we would like to see what our images look like. So let
'
s use a
// window to display them on the screen. (Note that you can zoom into
// window to display them on the screen. (Note that you can zoom into
// the window by holding CTRL and scrolling the mouse wheel)
// the window by holding CTRL and scrolling the mouse wheel)
image_window
my_window
(
edge_image
,
"Normal Edge Image"
);
image_window
my_window
(
edge_image
,
"Normal Edge Image"
);
...
...
examples/iosockstream_ex.cpp
View file @
114f677d
...
@@ -28,7 +28,7 @@ int main()
...
@@ -28,7 +28,7 @@ int main()
iosockstream
stream
(
"www.google.com:80"
);
iosockstream
stream
(
"www.google.com:80"
);
// At this point, we can use stream the same way we would use any other
// At this point, we can use stream the same way we would use any other
// C++ iostream object. So to test it out, lets make a HTTP GET request
// C++ iostream object. So to test it out, let
'
s make a HTTP GET request
// for the main Google page.
// for the main Google page.
stream
<<
"GET / HTTP/1.0
\r\n\r\n
"
;
stream
<<
"GET / HTTP/1.0
\r\n\r\n
"
;
...
...
examples/kcentroid_ex.cpp
View file @
114f677d
...
@@ -66,7 +66,7 @@ int main()
...
@@ -66,7 +66,7 @@ int main()
running_stats
<
double
>
rs
;
running_stats
<
double
>
rs
;
// Now lets output the distance from the centroid to some points that are from the sinc function.
// Now let
'
s output the distance from the centroid to some points that are from the sinc function.
// These numbers should all be similar. We will also calculate the statistics of these numbers
// These numbers should all be similar. We will also calculate the statistics of these numbers
// by accumulating them into the running_stats object called rs. This will let us easily
// by accumulating them into the running_stats object called rs. This will let us easily
// find the mean and standard deviation of the distances for use below.
// find the mean and standard deviation of the distances for use below.
...
@@ -80,7 +80,7 @@ int main()
...
@@ -80,7 +80,7 @@ int main()
m
(
0
)
=
-
0.5
;
m
(
1
)
=
sinc
(
m
(
0
));
cout
<<
" "
<<
test
(
m
)
<<
endl
;
rs
.
add
(
test
(
m
));
m
(
0
)
=
-
0.5
;
m
(
1
)
=
sinc
(
m
(
0
));
cout
<<
" "
<<
test
(
m
)
<<
endl
;
rs
.
add
(
test
(
m
));
cout
<<
endl
;
cout
<<
endl
;
// Lets output the distance from the centroid to some points that are NOT from the sinc function.
// Let
'
s output the distance from the centroid to some points that are NOT from the sinc function.
// These numbers should all be significantly bigger than previous set of numbers. We will also
// These numbers should all be significantly bigger than previous set of numbers. We will also
// use the rs.scale() function to find out how many standard deviations they are away from the
// use the rs.scale() function to find out how many standard deviations they are away from the
// mean of the test points from the sinc function. So in this case our criterion for "significantly bigger"
// mean of the test points from the sinc function. So in this case our criterion for "significantly bigger"
...
...
examples/krls_ex.cpp
View file @
114f677d
...
@@ -82,7 +82,7 @@ int main()
...
@@ -82,7 +82,7 @@ int main()
serialize
(
test
,
fout
);
serialize
(
test
,
fout
);
fout
.
close
();
fout
.
close
();
//
n
ow lets open that file back up and load the krls object it contains
//
N
ow let
'
s open that file back up and load the krls object it contains
.
ifstream
fin
(
"saved_krls_object.dat"
,
ios
::
binary
);
ifstream
fin
(
"saved_krls_object.dat"
,
ios
::
binary
);
deserialize
(
test
,
fin
);
deserialize
(
test
,
fin
);
...
...
examples/krls_filter_ex.cpp
View file @
114f677d
...
@@ -63,7 +63,7 @@ int main()
...
@@ -63,7 +63,7 @@ int main()
dlib
::
rand
rnd
;
dlib
::
rand
rnd
;
// Now lets loop over a big range of values from the sinc() function. Each time
// Now let
'
s loop over a big range of values from the sinc() function. Each time
// adding some random noise to the data we send to the krls object for training.
// adding some random noise to the data we send to the krls object for training.
sample_type
m
;
sample_type
m
;
double
mse_noise
=
0
;
double
mse_noise
=
0
;
...
...
examples/krr_classification_ex.cpp
View file @
114f677d
...
@@ -43,7 +43,7 @@ int main()
...
@@ -43,7 +43,7 @@ int main()
std
::
vector
<
sample_type
>
samples
;
std
::
vector
<
sample_type
>
samples
;
std
::
vector
<
double
>
labels
;
std
::
vector
<
double
>
labels
;
// Now lets put some data into our samples and labels objects. We do this
// Now let
'
s put some data into our samples and labels objects. We do this
// by looping over a bunch of points and labeling them according to their
// by looping over a bunch of points and labeling them according to their
// distance from the origin.
// distance from the origin.
for
(
double
r
=
-
20
;
r
<=
20
;
r
+=
0.4
)
for
(
double
r
=
-
20
;
r
<=
20
;
r
+=
0.4
)
...
@@ -129,7 +129,7 @@ int main()
...
@@ -129,7 +129,7 @@ int main()
cout
<<
"
\n
number of basis vectors in our learned_function is "
cout
<<
"
\n
number of basis vectors in our learned_function is "
<<
learned_function
.
function
.
basis_vectors
.
size
()
<<
endl
;
<<
learned_function
.
function
.
basis_vectors
.
size
()
<<
endl
;
// Now lets try this decision_function on some samples we haven't seen before.
// Now let
'
s try this decision_function on some samples we haven't seen before.
// The decision function will return values >= 0 for samples it predicts
// The decision function will return values >= 0 for samples it predicts
// are in the +1 class and numbers < 0 for samples it predicts to be in the -1 class.
// are in the +1 class and numbers < 0 for samples it predicts to be in the -1 class.
sample_type
sample
;
sample_type
sample
;
...
@@ -200,7 +200,7 @@ int main()
...
@@ -200,7 +200,7 @@ int main()
serialize
(
learned_pfunct
,
fout
);
serialize
(
learned_pfunct
,
fout
);
fout
.
close
();
fout
.
close
();
//
n
ow lets open that file back up and load the function object it contains
//
N
ow let
'
s open that file back up and load the function object it contains
.
ifstream
fin
(
"saved_function.dat"
,
ios
::
binary
);
ifstream
fin
(
"saved_function.dat"
,
ios
::
binary
);
deserialize
(
learned_pfunct
,
fin
);
deserialize
(
learned_pfunct
,
fin
);
...
...
examples/krr_regression_ex.cpp
View file @
114f677d
...
@@ -98,7 +98,7 @@ int main()
...
@@ -98,7 +98,7 @@ int main()
serialize
(
test
,
fout
);
serialize
(
test
,
fout
);
fout
.
close
();
fout
.
close
();
//
n
ow lets open that file back up and load the function object it contains
//
N
ow let
'
s open that file back up and load the function object it contains
.
ifstream
fin
(
"saved_function.dat"
,
ios
::
binary
);
ifstream
fin
(
"saved_function.dat"
,
ios
::
binary
);
deserialize
(
test
,
fin
);
deserialize
(
test
,
fin
);
...
...
examples/least_squares_ex.cpp
View file @
114f677d
...
@@ -95,7 +95,7 @@ int main()
...
@@ -95,7 +95,7 @@ int main()
cout
<<
"params: "
<<
trans
(
params
)
<<
endl
;
cout
<<
"params: "
<<
trans
(
params
)
<<
endl
;
// Now lets generate a bunch of input/output pairs according to our model.
// Now let
'
s generate a bunch of input/output pairs according to our model.
std
::
vector
<
std
::
pair
<
input_vector
,
double
>
>
data_samples
;
std
::
vector
<
std
::
pair
<
input_vector
,
double
>
>
data_samples
;
input_vector
input
;
input_vector
input
;
for
(
int
i
=
0
;
i
<
1000
;
++
i
)
for
(
int
i
=
0
;
i
<
1000
;
++
i
)
...
@@ -107,7 +107,7 @@ int main()
...
@@ -107,7 +107,7 @@ int main()
data_samples
.
push_back
(
make_pair
(
input
,
output
));
data_samples
.
push_back
(
make_pair
(
input
,
output
));
}
}
// Before we do anything, lets make sure that our derivative function defined above matches
// Before we do anything, let
'
s make sure that our derivative function defined above matches
// the approximate derivative computed using central differences (via derivative()).
// the approximate derivative computed using central differences (via derivative()).
// If this value is big then it means we probably typed the derivative function incorrectly.
// If this value is big then it means we probably typed the derivative function incorrectly.
cout
<<
"derivative error: "
<<
length
(
residual_derivative
(
data_samples
[
0
],
params
)
-
cout
<<
"derivative error: "
<<
length
(
residual_derivative
(
data_samples
[
0
],
params
)
-
...
@@ -117,7 +117,7 @@ int main()
...
@@ -117,7 +117,7 @@ int main()
// Now lets use the solve_least_squares_lm() routine to figure out what the
// Now let
'
s use the solve_least_squares_lm() routine to figure out what the
// parameters are based on just the data_samples.
// parameters are based on just the data_samples.
parameter_vector
x
;
parameter_vector
x
;
x
=
1
;
x
=
1
;
...
...
examples/linear_manifold_regularizer_ex.cpp
View file @
114f677d
...
@@ -98,7 +98,7 @@ using namespace dlib;
...
@@ -98,7 +98,7 @@ using namespace dlib;
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// First lets make a typedef for the kind of samples we will be using.
// First let
'
s make a typedef for the kind of samples we will be using.
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
// We will be using the radial_basis_kernel in this example program.
// We will be using the radial_basis_kernel in this example program.
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment