tensor_tools.cpp 19.9 KB
Newer Older
1
2
3
4
5
6
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_TeNSOR_TOOLS_CPP_
#define DLIB_TeNSOR_TOOLS_CPP_

#include "tensor_tools.h"
Davis King's avatar
Davis King committed
7
#include "../string.h"
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <atomic>

namespace dlib
{
    namespace
    {
        std::atomic<bool>& dnn_prefer_fastest_algo (
        )
        {
            static std::atomic<bool> var(true);
            return var;
        }
    }

    bool dnn_prefer_fastest_algorithms (
    )
    {
        return dnn_prefer_fastest_algo();
    }

    void set_dnn_prefer_fastest_algorithms(
    )
    {
        dnn_prefer_fastest_algo() = true;
    }

    void set_dnn_prefer_smallest_algorithms(
    )
    {
        dnn_prefer_fastest_algo() = false;
    }
}
40
41
42
43

namespace dlib { namespace tt
{

Davis King's avatar
Davis King committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// ----------------------------------------------------------------------------------------

    void inverse_norms (
        resizable_tensor& invnorms,
        const tensor& data,
        const double eps
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::inverse_norms(invnorms, data, eps);
#else
        invnorms = reciprocal(sqrt(sum_cols(squared(mat(data))) + eps));
#endif
    }

    void dot_prods (
        resizable_tensor& out,
        const tensor& lhs,
        const tensor& rhs
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::dot_prods(out, lhs, rhs);
#else
        out = sum_cols(pointwise_multiply(mat(lhs), mat(rhs))); 
#endif
    }

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    void scale_columns (
        tensor& out,
        const tensor& m,
        const tensor& v
    )
    {
        DLIB_CASSERT(have_same_dimensions(out,m));
        DLIB_CASSERT(is_vector(v));
        if (m.size() == 0 && v.size() == 0)
            return;
        DLIB_CASSERT(m.size() != 0);
        DLIB_CASSERT(m.size()/m.num_samples() == v.size());

#ifdef DLIB_USE_CUDA
        cuda::scale_columns(out, m, v);
#else
        DLIB_CASSERT(false, "shouldn't be called right now");
        out = scale_columns(mat(m), mat(v));
#endif
    }

Davis King's avatar
Davis King committed
93
94
95
96
97
98
99
    void scale_rows (
        tensor& out,
        const tensor& m,
        const tensor& v
    )
    {
        DLIB_CASSERT(have_same_dimensions(out,m));
100
101
102
103
104
        DLIB_CASSERT(is_vector(v));
        if (m.size() == 0 && v.size() == 0)
            return;
        DLIB_CASSERT(m.size() != 0);
        DLIB_CASSERT(m.num_samples() == v.size());
Davis King's avatar
Davis King committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

#ifdef DLIB_USE_CUDA
        cuda::scale_rows(out, m, v);
#else
        out = scale_rows(mat(m), mat(v));
#endif
    }

    void scale_rows2 (
        float beta, 
        tensor& out,
        const tensor& m1,
        const tensor& m2,
        const tensor& v1,
        const tensor& v2
    )
    {
        DLIB_CASSERT(have_same_dimensions(out,m1));
        DLIB_CASSERT(have_same_dimensions(out,m2));
        DLIB_CASSERT(have_same_dimensions(v1,v2));
        DLIB_CASSERT(is_vector(mat(v1))); 
        DLIB_CASSERT(v1.size() == m1.num_samples());

#ifdef DLIB_USE_CUDA
        cuda::scale_rows2(beta, out, m1, m2, v1, v2);
#else
        if (beta == 0)
            out = scale_rows(mat(m1) - scale_rows(mat(m2),mat(v1)), mat(v2));
        else
            out = beta*mat(out) + scale_rows(mat(m1) - scale_rows(mat(m2),mat(v1)), mat(v2));
#endif
    }

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// ----------------------------------------------------------------------------------------

    void gemm (
        float beta,
        tensor& dest,
        float alpha,
        const tensor& lhs,
        bool trans_lhs,
        const tensor& rhs,
        bool trans_rhs
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::gemm(beta, dest, alpha, lhs, trans_lhs, rhs, trans_rhs);
#else
153
154
155
156
157
158
159
160
161
162
163
        if (beta != 0)
        {
            if (trans_lhs && trans_rhs)
                dest = alpha*trans(mat(lhs))*trans(mat(rhs)) + beta*mat(dest);
            else if (!trans_lhs && trans_rhs)
                dest = alpha*mat(lhs)*trans(mat(rhs)) + beta*mat(dest);
            else if (trans_lhs && !trans_rhs)
                dest = alpha*trans(mat(lhs))*mat(rhs) + beta*mat(dest);
            else
                dest = alpha*mat(lhs)*mat(rhs) + beta*mat(dest);
        }
164
        else
165
166
167
168
169
170
171
172
173
174
        {
            if (trans_lhs && trans_rhs)
                dest = alpha*trans(mat(lhs))*trans(mat(rhs));
            else if (!trans_lhs && trans_rhs)
                dest = alpha*mat(lhs)*trans(mat(rhs));
            else if (trans_lhs && !trans_rhs)
                dest = alpha*trans(mat(lhs))*mat(rhs);
            else
                dest = alpha*mat(lhs)*mat(rhs);
        }
175
176
177
178
179
180
181
182
183
#endif
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    tensor_rand::
    tensor_rand(
        unsigned long long seed
Davis King's avatar
Davis King committed
184
185
186
187
188
189
    ) 
#ifdef DLIB_USE_CUDA
    :rnd(seed){}
#else
    {rnd.set_seed(cast_to_string(seed)); }
#endif
190
191
192
193
194
195
196
197

    void tensor_rand::
    fill_gaussian (
        tensor& data,
        float mean,
        float stddev
    )
    {
198
        DLIB_CASSERT(data.size()%2 == 0);
199
#ifdef DLIB_USE_CUDA
Davis King's avatar
Davis King committed
200
        rnd.fill_gaussian(data, mean, stddev);
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#else
        for (auto& x : data) 
            x = rnd.get_random_gaussian()*stddev + mean;
#endif
    }

    void tensor_rand::
    fill_uniform (
        tensor& data
    )
    {
#ifdef DLIB_USE_CUDA
        rnd.fill_uniform(data);
#else
        for (auto& x : data) 
            x = rnd.get_random_float();
#endif
    }

// ----------------------------------------------------------------------------------------
221
222
223
// ----------------------------------------------------------------------------------------

    void multiply (
224
        bool add_to,
225
226
227
228
229
        tensor& dest,
        const tensor& src1,
        const tensor& src2
    )
    {
230
231
        DLIB_CASSERT(dest.k() == src1.k() && src1.k() == src2.k() &&
            dest.nr() == src1.nr() && src1.nr() == src2.nr() &&
232
            dest.nc() == src1.nc() && src1.nc() == src2.nc() );
233
234
235
        const long MD = std::max(std::max(dest.num_samples(),src1.num_samples()),src2.num_samples());
        DLIB_CASSERT((dest.num_samples()==1 || dest.num_samples()==MD) &&
                    (src1.num_samples()==1 || src1.num_samples()==MD) &&
236
                    (src2.num_samples()==1 || src2.num_samples()==MD) );
237
#ifdef DLIB_USE_CUDA
238
        cuda::multiply(add_to, dest, src1, src2);
239
#else
240
        cpu::multiply(add_to, dest, src1, src2);
241
242
243
244
#endif

    }

245
    void multiply_conv (
246
        bool add_to,
247
248
249
250
251
252
        tensor& dest,
        const tensor& src1,
        const tensor& src2
    )
    {
#ifdef DLIB_USE_CUDA
253
        cuda::multiply_conv(add_to, dest, src1, src2);
254
#else
255
        cpu::multiply_conv(add_to, dest, src1, src2);
256
257
258
#endif
    }

259
260
261
// ----------------------------------------------------------------------------------------

    void affine_transform(
262
        tensor& dest,
263
264
265
266
267
268
        const tensor& src,
        const float A,
        const float B
    )
    {
#ifdef DLIB_USE_CUDA
269
        cuda::affine_transform(dest,src,A,B);
270
271
272
273
274
#else
        cpu::affine_transform(dest,src,A,B);
#endif
    }

275
276
277
278
279
280
281
282
283
284
285
286
287
    void affine_transform(
        tensor& dest,
        const tensor& src,
        const float A
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform(dest,src,A);
#else
        cpu::affine_transform(dest,src,A,0);
#endif
    }

288
289
290
291
292
293
294
295
296
297
    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const float A,
        const float B,
        const float C
    )
    {
#ifdef DLIB_USE_CUDA
298
        cuda::affine_transform(dest,src1,src2,A,B,C);
299
300
301
302
303
#else
        cpu::affine_transform(dest,src1,src2,A,B,C);
#endif
    }

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const float A,
        const float B
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform(dest,src1,src2,A,B);
#else
        cpu::affine_transform(dest,src1,src2,A,B,0);
#endif
    }

319
320
321
322
323
324
325
326
327
328
329
330
    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const tensor& src3,
        const float A,
        const float B,
        const float C,
        const float D
    )
    {
#ifdef DLIB_USE_CUDA
331
        cuda::affine_transform(dest,src1,src2,src3,A,B,C,D);
332
333
334
335
336
#else
        cpu::affine_transform(dest,src1,src2,src3,A,B,C,D);
#endif
    }

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    void affine_transform_range(
        size_t begin,
        size_t end,
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const tensor& src3,
        const float A,
        const float B,
        const float C
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform_range(begin, end, dest,src1,src2,src3,A,B,C);
#else
        cpu::affine_transform_range(begin, end, dest,src1,src2,src3,A,B,C);
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
#endif
    }

    void affine_transform(
        const rectangle& rect,
        tensor& dest, 
        const tensor& src1, 
        const tensor& src2, 
        const tensor& src3, 
        float A, 
        float B,
        float C
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform(rect, dest,src1,src2,src3,A,B,C);
#else
        cpu::affine_transform(rect, dest,src1,src2,src3,A,B,C);
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#endif
    }

    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const tensor& src3,
        const float A,
        const float B,
        const float C
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform_range(0,dest.size(),dest,src1,src2,src3,A,B,C);
#else
        cpu::affine_transform_range(0,dest.size(),dest,src1,src2,src3,A,B,C);
#endif
    }

391
392
393
// ----------------------------------------------------------------------------------------

    void affine_transform(
394
        tensor& dest,
395
396
397
398
399
400
        const tensor& src,
        const tensor& A,
        const tensor& B
    )
    {
#ifdef DLIB_USE_CUDA
401
        cuda::affine_transform(dest,src,A,B);
402
403
404
405
406
#else
        cpu::affine_transform(dest,src,A,B);
#endif
    }

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
// ----------------------------------------------------------------------------------------

    void affine_transform_conv(
        tensor& dest,
        const tensor& src,
        const tensor& A,
        const tensor& B
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform_conv(dest,src,A,B);
#else
        cpu::affine_transform_conv(dest,src,A,B);
#endif
    }

Davis King's avatar
Davis King committed
423
424
425
// ----------------------------------------------------------------------------------------

    void compute_adam_update (
426
427
        size_t begin,
        size_t end,
Davis King's avatar
Davis King committed
428
429
430
431
432
433
434
435
436
437
438
439
440
        tensor& s,
        tensor& m,
        tensor& v,
        const float t,
        const float learning_rate,
        const float weight_decay,
        const float momentum1,
        const float momentum2,
        const tensor& params,
        const tensor& params_grad
    )
    {
#ifdef DLIB_USE_CUDA
441
        cuda::compute_adam_update(begin, end, s, m, v, t, learning_rate, weight_decay, momentum1,
Davis King's avatar
Davis King committed
442
443
            momentum2, params, params_grad);
#else
444
        cpu::compute_adam_update(begin, end, s, m, v, t, learning_rate, weight_decay, momentum1,
Davis King's avatar
Davis King committed
445
446
447
448
            momentum2, params, params_grad);
#endif
    }

449
450
// ----------------------------------------------------------------------------------------

451
    void batch_normalize_inference (
452
        const double eps,
453
454
455
456
457
        resizable_tensor& dest,
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta,
        const tensor& running_means,
458
        const tensor& running_variances
459
460
461
    )
    {
#ifdef DLIB_USE_CUDA
462
        cuda::batch_normalize_inference(eps,dest,src,gamma,beta,running_means,running_variances);
463
#else
464
        cpu::batch_normalize_inference(eps,dest,src,gamma,beta,running_means,running_variances);
465
466
467
#endif
    }

468
    void batch_normalize (
469
        const double eps,
470
471
472
        resizable_tensor& dest,
        resizable_tensor& means,
        resizable_tensor& vars,
473
474
        const double averaging_factor,
        resizable_tensor& running_means,
475
        resizable_tensor& running_variances,
476
477
478
479
480
481
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta 
    )
    {
#ifdef DLIB_USE_CUDA
482
        cuda::batch_normalize(eps,dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
483
#else
484
        cpu::batch_normalize(eps,dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
485
486
487
488
#endif
    }

    void batch_normalize_gradient (
489
        const double eps,
490
491
492
493
494
495
496
497
498
499
500
501
            const tensor& gradient_input,
            const tensor& means,
            const tensor& invstds,
            const tensor& src,
            const tensor& gamma,
            tensor& src_grad,
            tensor& gamma_grad, 
            tensor& beta_grad 
    )
    {
             
#ifdef DLIB_USE_CUDA
502
        cuda::batch_normalize_gradient(eps,gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
503
#else
504
        cpu::batch_normalize_gradient(eps,gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
505
506
507
508
509
#endif
    }

// ----------------------------------------------------------------------------------------

510
    void batch_normalize_conv_inference (
511
        const double eps,
512
513
514
515
516
        resizable_tensor& dest,
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta,
        const tensor& running_means,
517
        const tensor& running_variances
518
519
520
    )
    {
#ifdef DLIB_USE_CUDA
521
        cuda::batch_normalize_conv_inference(eps,dest,src,gamma,beta,running_means,running_variances);
522
#else
523
        cpu::batch_normalize_conv_inference(eps,dest,src,gamma,beta,running_means,running_variances);
524
525
526
#endif
    }

527
    void batch_normalize_conv (
528
        const double eps,
529
530
531
        resizable_tensor& dest,
        resizable_tensor& means,
        resizable_tensor& vars,
532
533
        const double averaging_factor,
        resizable_tensor& running_means,
534
        resizable_tensor& running_variances,
535
536
537
538
539
540
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta 
    )
    {
#ifdef DLIB_USE_CUDA
541
        cuda::batch_normalize_conv(eps,dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
542
#else
543
        cpu::batch_normalize_conv(eps,dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
544
545
546
547
#endif
    }

    void batch_normalize_conv_gradient (
548
549
550
551
552
553
554
555
556
        const double eps,
        const tensor& gradient_input,
        const tensor& means,
        const tensor& invstds,
        const tensor& src,
        const tensor& gamma,
        tensor& src_grad,
        tensor& gamma_grad, 
        tensor& beta_grad 
557
558
559
560
    )
    {
             
#ifdef DLIB_USE_CUDA
561
        cuda::batch_normalize_conv_gradient(eps,gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
562
#else
563
        cpu::batch_normalize_conv_gradient(eps,gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
564
565
566
567
568
569
570
571
572
573
574
#endif
    }

// ----------------------------------------------------------------------------------------

    void threshold (
        tensor& data,
        float thresh
    )
    {
#ifdef DLIB_USE_CUDA
575
        cuda::threshold(data,thresh);
576
577
578
579
580
#else
        cpu::threshold(data,thresh);
#endif
    }

581
582
583
584
585
586
587
588
589
590
591
592
593
594
    void dot (
        const tensor& a,
        const tensor& b,
        tensor& result,
        size_t idx
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::dot(a,b,result,idx);
#else
        cpu::dot(a,b,result,idx);
#endif
    }

595
596
597
598
599
600
601
602
603
604
605
606
// ----------------------------------------------------------------------------------------

    void add(
        float beta,
        tensor& dest,
        float alpha,
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::add(beta,dest,alpha,src);
#else
607
        cpu::add(beta,dest,alpha,src);
608
609
610
#endif
    }

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
// ----------------------------------------------------------------------------------------

    void add (
        tensor& dest,
        const tensor& src1,
        const tensor& src2
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::add(dest, src1, src2);
#else
        cpu::add(dest, src1, src2);
#endif
    }

626
627
// ----------------------------------------------------------------------------------------

628
    void assign_conv_bias_gradient (
629
630
631
632
633
        tensor& grad,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
634
        cuda::assign_conv_bias_gradient(grad,gradient_input);
635
#else
636
        cpu::assign_conv_bias_gradient(grad,gradient_input);
637
638
639
#endif
    }

640
641
// ----------------------------------------------------------------------------------------

642
    void assign_bias_gradient (
643
644
645
646
647
        tensor& grad,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
648
        cuda::assign_bias_gradient(grad,gradient_input);
649
#else
650
        cpu::assign_bias_gradient(grad,gradient_input);
651
652
653
#endif
    }

654
655
656
657
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    void softmax (
658
        tensor& dest,
659
660
661
662
663
664
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::softmax(dest,src);
#else
665
        cpu::softmax(dest,src);
666
667
668
669
670
#endif
    }

    void softmax_gradient (
        tensor& grad,
671
        const tensor& dest,
672
673
674
675
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
676
        cuda::softmax_gradient(grad, dest, gradient_input);
677
#else
678
        cpu::softmax_gradient(grad, dest, gradient_input);
679
680
681
682
683
684
#endif
    }

// ----------------------------------------------------------------------------------------

    void sigmoid (
685
        tensor& dest,
686
687
688
689
690
691
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::sigmoid(dest,src);
#else
692
        cpu::sigmoid(dest,src);
693
694
695
696
697
698
699
700
701
702
#endif
    }

    void sigmoid_gradient (
        tensor& grad,
        const tensor& dest,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
703
        cuda::sigmoid_gradient(grad, dest, gradient_input);
704
#else
705
        cpu::sigmoid_gradient(grad, dest, gradient_input);
706
707
708
709
710
711
#endif
    }

// ----------------------------------------------------------------------------------------

    void relu (
712
        tensor& dest,
713
714
715
716
717
718
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::relu(dest,src);
#else
719
        cpu::relu(dest,src);
720
721
722
723
724
725
726
727
728
729
#endif
    }

    void relu_gradient (
        tensor& grad,
        const tensor& dest,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
730
        cuda::relu_gradient(grad, dest, gradient_input);
731
#else
732
        cpu::relu_gradient(grad, dest, gradient_input);
733
734
735
#endif
    }

Davis King's avatar
Davis King committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
// ----------------------------------------------------------------------------------------

    void prelu (
        tensor& dest,
        const tensor& src,
        const tensor& param
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::prelu(dest, src, param);
#else
        cpu::prelu(dest, src, param);
#endif
    }

    void prelu_gradient (
        tensor& grad,
        const tensor& src,
        const tensor& gradient_input,
        const tensor& param,
        tensor& params_grad 
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::prelu_gradient(grad, src, gradient_input, param, params_grad);
#else
        cpu::prelu_gradient(grad, src, gradient_input, param, params_grad);
#endif
    }

766
767
768
// ----------------------------------------------------------------------------------------

    void tanh (
769
        tensor& dest,
770
771
772
773
774
775
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::tanh(dest,src);
#else
776
        cpu::tanh(dest,src);
777
778
779
780
781
782
783
784
785
786
#endif
    }

    void tanh_gradient (
        tensor& grad,
        const tensor& dest,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
787
        cuda::tanh_gradient(grad, dest, gradient_input);
788
#else
789
        cpu::tanh_gradient(grad, dest, gradient_input);
790
791
792
#endif
    }

Fm's avatar
Fm committed
793
794
795
796
797
798
799
800
801
802
// ------------------------------------------------------------------------------------

        void copy_tensor(
                tensor& dest,
                size_t dest_k_offset,
                const tensor& src,
                size_t src_k_offset,
                size_t count_k
        )
        {
Fm's avatar
Fm committed
803
#ifdef DLIB_USE_CUDA
Fm's avatar
Fm committed
804
            cuda::copy_tensor(dest, dest_k_offset, src, src_k_offset, count_k);
Fm's avatar
Fm committed
805
#else
Fm's avatar
Fm committed
806
            cpu::copy_tensor(dest, dest_k_offset, src, src_k_offset, count_k);
Fm's avatar
Fm committed
807
#endif
Fm's avatar
Fm committed
808
        }
Fm's avatar
Fm committed
809

810
811
812
813
814
815
// ----------------------------------------------------------------------------------------

}}

#endif // DLIB_TeNSOR_TOOLS_CPP_