tensor_tools.cpp 16.5 KB
Newer Older
1
2
3
4
5
6
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_TeNSOR_TOOLS_CPP_
#define DLIB_TeNSOR_TOOLS_CPP_

#include "tensor_tools.h"
Davis King's avatar
Davis King committed
7
#include "../string.h"
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <atomic>

namespace dlib
{
    namespace
    {
        std::atomic<bool>& dnn_prefer_fastest_algo (
        )
        {
            static std::atomic<bool> var(true);
            return var;
        }
    }

    bool dnn_prefer_fastest_algorithms (
    )
    {
        return dnn_prefer_fastest_algo();
    }

    void set_dnn_prefer_fastest_algorithms(
    )
    {
        dnn_prefer_fastest_algo() = true;
    }

    void set_dnn_prefer_smallest_algorithms(
    )
    {
        dnn_prefer_fastest_algo() = false;
    }
}
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

namespace dlib { namespace tt
{

// ----------------------------------------------------------------------------------------

    void gemm (
        float beta,
        tensor& dest,
        float alpha,
        const tensor& lhs,
        bool trans_lhs,
        const tensor& rhs,
        bool trans_rhs
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::gemm(beta, dest, alpha, lhs, trans_lhs, rhs, trans_rhs);
#else
59
60
61
62
63
64
65
66
67
68
69
        if (beta != 0)
        {
            if (trans_lhs && trans_rhs)
                dest = alpha*trans(mat(lhs))*trans(mat(rhs)) + beta*mat(dest);
            else if (!trans_lhs && trans_rhs)
                dest = alpha*mat(lhs)*trans(mat(rhs)) + beta*mat(dest);
            else if (trans_lhs && !trans_rhs)
                dest = alpha*trans(mat(lhs))*mat(rhs) + beta*mat(dest);
            else
                dest = alpha*mat(lhs)*mat(rhs) + beta*mat(dest);
        }
70
        else
71
72
73
74
75
76
77
78
79
80
        {
            if (trans_lhs && trans_rhs)
                dest = alpha*trans(mat(lhs))*trans(mat(rhs));
            else if (!trans_lhs && trans_rhs)
                dest = alpha*mat(lhs)*trans(mat(rhs));
            else if (trans_lhs && !trans_rhs)
                dest = alpha*trans(mat(lhs))*mat(rhs);
            else
                dest = alpha*mat(lhs)*mat(rhs);
        }
81
82
83
84
85
86
87
88
89
#endif
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    tensor_rand::
    tensor_rand(
        unsigned long long seed
Davis King's avatar
Davis King committed
90
91
92
93
94
95
    ) 
#ifdef DLIB_USE_CUDA
    :rnd(seed){}
#else
    {rnd.set_seed(cast_to_string(seed)); }
#endif
96
97
98
99
100
101
102
103
104
105

    void tensor_rand::
    fill_gaussian (
        tensor& data,
        float mean,
        float stddev
    )
    {
        DLIB_CASSERT(data.size()%2 == 0,"");
#ifdef DLIB_USE_CUDA
Davis King's avatar
Davis King committed
106
        rnd.fill_gaussian(data, mean, stddev);
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#else
        for (auto& x : data) 
            x = rnd.get_random_gaussian()*stddev + mean;
#endif
    }

    void tensor_rand::
    fill_uniform (
        tensor& data
    )
    {
#ifdef DLIB_USE_CUDA
        rnd.fill_uniform(data);
#else
        for (auto& x : data) 
            x = rnd.get_random_float();
#endif
    }

// ----------------------------------------------------------------------------------------
127
128
129
// ----------------------------------------------------------------------------------------

    void multiply (
130
        bool add_to,
131
132
133
134
135
        tensor& dest,
        const tensor& src1,
        const tensor& src2
    )
    {
136
137
138
139
140
141
142
        DLIB_CASSERT(dest.k() == src1.k() && src1.k() == src2.k() &&
            dest.nr() == src1.nr() && src1.nr() == src2.nr() &&
            dest.nc() == src1.nc() && src1.nc() == src2.nc() ,"");
        const long MD = std::max(std::max(dest.num_samples(),src1.num_samples()),src2.num_samples());
        DLIB_CASSERT((dest.num_samples()==1 || dest.num_samples()==MD) &&
                    (src1.num_samples()==1 || src1.num_samples()==MD) &&
                    (src2.num_samples()==1 || src2.num_samples()==MD) ,"");
143
#ifdef DLIB_USE_CUDA
144
        cuda::multiply(add_to, dest, src1, src2);
145
#else
146
        cpu::multiply(add_to, dest, src1, src2);
147
148
149
150
#endif

    }

151
    void multiply_conv (
152
        bool add_to,
153
154
155
156
157
158
        tensor& dest,
        const tensor& src1,
        const tensor& src2
    )
    {
#ifdef DLIB_USE_CUDA
159
        cuda::multiply_conv(add_to, dest, src1, src2);
160
#else
161
        cpu::multiply_conv(add_to, dest, src1, src2);
162
163
164
#endif
    }

165
166
167
// ----------------------------------------------------------------------------------------

    void affine_transform(
168
        tensor& dest,
169
170
171
172
173
174
        const tensor& src,
        const float A,
        const float B
    )
    {
#ifdef DLIB_USE_CUDA
175
        cuda::affine_transform(dest,src,A,B);
176
177
178
179
180
#else
        cpu::affine_transform(dest,src,A,B);
#endif
    }

181
182
183
184
185
186
187
188
189
190
191
192
193
    void affine_transform(
        tensor& dest,
        const tensor& src,
        const float A
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform(dest,src,A);
#else
        cpu::affine_transform(dest,src,A,0);
#endif
    }

194
195
196
197
198
199
200
201
202
203
    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const float A,
        const float B,
        const float C
    )
    {
#ifdef DLIB_USE_CUDA
204
        cuda::affine_transform(dest,src1,src2,A,B,C);
205
206
207
208
209
#else
        cpu::affine_transform(dest,src1,src2,A,B,C);
#endif
    }

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const float A,
        const float B
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform(dest,src1,src2,A,B);
#else
        cpu::affine_transform(dest,src1,src2,A,B,0);
#endif
    }

225
226
227
228
229
230
231
232
233
234
235
236
    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const tensor& src3,
        const float A,
        const float B,
        const float C,
        const float D
    )
    {
#ifdef DLIB_USE_CUDA
237
        cuda::affine_transform(dest,src1,src2,src3,A,B,C,D);
238
239
240
241
242
#else
        cpu::affine_transform(dest,src1,src2,src3,A,B,C,D);
#endif
    }

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    void affine_transform_range(
        size_t begin,
        size_t end,
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const tensor& src3,
        const float A,
        const float B,
        const float C
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform_range(begin, end, dest,src1,src2,src3,A,B,C);
#else
        cpu::affine_transform_range(begin, end, dest,src1,src2,src3,A,B,C);
#endif
    }

    void affine_transform(
        tensor& dest,
        const tensor& src1,
        const tensor& src2,
        const tensor& src3,
        const float A,
        const float B,
        const float C
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform_range(0,dest.size(),dest,src1,src2,src3,A,B,C);
#else
        cpu::affine_transform_range(0,dest.size(),dest,src1,src2,src3,A,B,C);
#endif
    }

279
280
281
// ----------------------------------------------------------------------------------------

    void affine_transform(
282
        tensor& dest,
283
284
285
286
287
288
        const tensor& src,
        const tensor& A,
        const tensor& B
    )
    {
#ifdef DLIB_USE_CUDA
289
        cuda::affine_transform(dest,src,A,B);
290
291
292
293
294
#else
        cpu::affine_transform(dest,src,A,B);
#endif
    }

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
// ----------------------------------------------------------------------------------------

    void affine_transform_conv(
        tensor& dest,
        const tensor& src,
        const tensor& A,
        const tensor& B
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::affine_transform_conv(dest,src,A,B);
#else
        cpu::affine_transform_conv(dest,src,A,B);
#endif
    }

Davis King's avatar
Davis King committed
311
312
313
// ----------------------------------------------------------------------------------------

    void compute_adam_update (
314
315
        size_t begin,
        size_t end,
Davis King's avatar
Davis King committed
316
317
318
319
320
321
322
323
324
325
326
327
328
        tensor& s,
        tensor& m,
        tensor& v,
        const float t,
        const float learning_rate,
        const float weight_decay,
        const float momentum1,
        const float momentum2,
        const tensor& params,
        const tensor& params_grad
    )
    {
#ifdef DLIB_USE_CUDA
329
        cuda::compute_adam_update(begin, end, s, m, v, t, learning_rate, weight_decay, momentum1,
Davis King's avatar
Davis King committed
330
331
            momentum2, params, params_grad);
#else
332
        cpu::compute_adam_update(begin, end, s, m, v, t, learning_rate, weight_decay, momentum1,
Davis King's avatar
Davis King committed
333
334
335
336
            momentum2, params, params_grad);
#endif
    }

337
338
// ----------------------------------------------------------------------------------------

339
340
341
342
343
344
    void batch_normalize_inference (
        resizable_tensor& dest,
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta,
        const tensor& running_means,
345
        const tensor& running_variances
346
347
348
    )
    {
#ifdef DLIB_USE_CUDA
349
        cuda::batch_normalize_inference(dest,src,gamma,beta,running_means,running_variances);
350
#else
351
        cpu::batch_normalize_inference(dest,src,gamma,beta,running_means,running_variances);
352
353
354
#endif
    }

355
356
357
358
    void batch_normalize (
        resizable_tensor& dest,
        resizable_tensor& means,
        resizable_tensor& vars,
359
360
        const double averaging_factor,
        resizable_tensor& running_means,
361
        resizable_tensor& running_variances,
362
363
364
365
366
367
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta 
    )
    {
#ifdef DLIB_USE_CUDA
368
        cuda::batch_normalize(dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
369
#else
370
        cpu::batch_normalize(dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#endif
    }

    void batch_normalize_gradient (
            const tensor& gradient_input,
            const tensor& means,
            const tensor& invstds,
            const tensor& src,
            const tensor& gamma,
            tensor& src_grad,
            tensor& gamma_grad, 
            tensor& beta_grad 
    )
    {
             
#ifdef DLIB_USE_CUDA
        cuda::batch_normalize_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
388
#else
389
        cpu::batch_normalize_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
390
391
392
393
394
#endif
    }

// ----------------------------------------------------------------------------------------

395
396
397
398
399
400
    void batch_normalize_conv_inference (
        resizable_tensor& dest,
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta,
        const tensor& running_means,
401
        const tensor& running_variances
402
403
404
    )
    {
#ifdef DLIB_USE_CUDA
405
        cuda::batch_normalize_conv_inference(dest,src,gamma,beta,running_means,running_variances);
406
#else
407
        cpu::batch_normalize_conv_inference(dest,src,gamma,beta,running_means,running_variances);
408
409
410
#endif
    }

411
412
413
414
    void batch_normalize_conv (
        resizable_tensor& dest,
        resizable_tensor& means,
        resizable_tensor& vars,
415
416
        const double averaging_factor,
        resizable_tensor& running_means,
417
        resizable_tensor& running_variances,
418
419
420
421
422
423
        const tensor& src,
        const tensor& gamma, 
        const tensor& beta 
    )
    {
#ifdef DLIB_USE_CUDA
424
        cuda::batch_normalize_conv(dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
425
#else
426
        cpu::batch_normalize_conv(dest,means,vars,averaging_factor,running_means,running_variances,src,gamma,beta);
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#endif
    }

    void batch_normalize_conv_gradient (
            const tensor& gradient_input,
            const tensor& means,
            const tensor& invstds,
            const tensor& src,
            const tensor& gamma,
            tensor& src_grad,
            tensor& gamma_grad, 
            tensor& beta_grad 
    )
    {
             
#ifdef DLIB_USE_CUDA
        cuda::batch_normalize_conv_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
444
#else
445
        cpu::batch_normalize_conv_gradient(gradient_input, means, invstds, src, gamma, src_grad, gamma_grad, beta_grad);
446
447
448
449
450
451
452
453
454
455
456
#endif
    }

// ----------------------------------------------------------------------------------------

    void threshold (
        tensor& data,
        float thresh
    )
    {
#ifdef DLIB_USE_CUDA
457
        cuda::threshold(data,thresh);
458
459
460
461
462
#else
        cpu::threshold(data,thresh);
#endif
    }

463
464
465
466
467
468
469
470
471
472
473
474
475
476
    void dot (
        const tensor& a,
        const tensor& b,
        tensor& result,
        size_t idx
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::dot(a,b,result,idx);
#else
        cpu::dot(a,b,result,idx);
#endif
    }

477
478
479
480
481
482
483
484
485
486
487
488
// ----------------------------------------------------------------------------------------

    void add(
        float beta,
        tensor& dest,
        float alpha,
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::add(beta,dest,alpha,src);
#else
489
        cpu::add(beta,dest,alpha,src);
490
491
492
#endif
    }

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
// ----------------------------------------------------------------------------------------

    void add (
        tensor& dest,
        const tensor& src1,
        const tensor& src2
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::add(dest, src1, src2);
#else
        cpu::add(dest, src1, src2);
#endif
    }

508
509
// ----------------------------------------------------------------------------------------

510
    void assign_conv_bias_gradient (
511
512
513
514
515
        tensor& grad,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
516
        cuda::assign_conv_bias_gradient(grad,gradient_input);
517
#else
518
        cpu::assign_conv_bias_gradient(grad,gradient_input);
519
520
521
#endif
    }

522
523
// ----------------------------------------------------------------------------------------

524
    void assign_bias_gradient (
525
526
527
528
529
        tensor& grad,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
530
        cuda::assign_bias_gradient(grad,gradient_input);
531
#else
532
        cpu::assign_bias_gradient(grad,gradient_input);
533
534
535
#endif
    }

536
537
538
539
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    void softmax (
540
        tensor& dest,
541
542
543
544
545
546
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::softmax(dest,src);
#else
547
        cpu::softmax(dest,src);
548
549
550
551
552
#endif
    }

    void softmax_gradient (
        tensor& grad,
553
        const tensor& dest,
554
555
556
557
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
558
        cuda::softmax_gradient(grad, dest, gradient_input);
559
#else
560
        cpu::softmax_gradient(grad, dest, gradient_input);
561
562
563
564
565
566
#endif
    }

// ----------------------------------------------------------------------------------------

    void sigmoid (
567
        tensor& dest,
568
569
570
571
572
573
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::sigmoid(dest,src);
#else
574
        cpu::sigmoid(dest,src);
575
576
577
578
579
580
581
582
583
584
#endif
    }

    void sigmoid_gradient (
        tensor& grad,
        const tensor& dest,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
585
        cuda::sigmoid_gradient(grad, dest, gradient_input);
586
#else
587
        cpu::sigmoid_gradient(grad, dest, gradient_input);
588
589
590
591
592
593
#endif
    }

// ----------------------------------------------------------------------------------------

    void relu (
594
        tensor& dest,
595
596
597
598
599
600
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::relu(dest,src);
#else
601
        cpu::relu(dest,src);
602
603
604
605
606
607
608
609
610
611
#endif
    }

    void relu_gradient (
        tensor& grad,
        const tensor& dest,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
612
        cuda::relu_gradient(grad, dest, gradient_input);
613
#else
614
        cpu::relu_gradient(grad, dest, gradient_input);
615
616
617
#endif
    }

Davis King's avatar
Davis King committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
// ----------------------------------------------------------------------------------------

    void prelu (
        tensor& dest,
        const tensor& src,
        const tensor& param
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::prelu(dest, src, param);
#else
        cpu::prelu(dest, src, param);
#endif
    }

    void prelu_gradient (
        tensor& grad,
        const tensor& src,
        const tensor& gradient_input,
        const tensor& param,
        tensor& params_grad 
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::prelu_gradient(grad, src, gradient_input, param, params_grad);
#else
        cpu::prelu_gradient(grad, src, gradient_input, param, params_grad);
#endif
    }

648
649
650
// ----------------------------------------------------------------------------------------

    void tanh (
651
        tensor& dest,
652
653
654
655
656
657
        const tensor& src
    )
    {
#ifdef DLIB_USE_CUDA
        cuda::tanh(dest,src);
#else
658
        cpu::tanh(dest,src);
659
660
661
662
663
664
665
666
667
668
#endif
    }

    void tanh_gradient (
        tensor& grad,
        const tensor& dest,
        const tensor& gradient_input
    )
    {
#ifdef DLIB_USE_CUDA
669
        cuda::tanh_gradient(grad, dest, gradient_input);
670
#else
671
        cpu::tanh_gradient(grad, dest, gradient_input);
672
673
674
675
676
677
678
679
680
#endif
    }

// ----------------------------------------------------------------------------------------

}}

#endif // DLIB_TeNSOR_TOOLS_CPP_