svm_c_trainer.cpp 12 KB
Newer Older
1
2
// Copyright (C) 2013  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
3

4
#include <dlib/python.h>
5
#include "testing_results.h"
6
#include <dlib/matrix.h>
7
#include <dlib/svm_threaded.h>
8
9
10
11
12

using namespace dlib;
using namespace std;

typedef matrix<double,0,1> sample_type; 
Davis King's avatar
Davis King committed
13
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
14

Davis King's avatar
Davis King committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
template <typename trainer_type>
typename trainer_type::trained_function_type train (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& samples,
    const std::vector<double>& labels
)
{
    pyassert(is_binary_classification_problem(samples,labels), "Invalid inputs");
    return trainer.train(samples, labels);
}

template <typename trainer_type>
void set_epsilon ( trainer_type& trainer, double eps)
{
    pyassert(eps > 0, "epsilon must be > 0");
    trainer.set_epsilon(eps);
}

template <typename trainer_type>
double get_epsilon ( const trainer_type& trainer) { return trainer.get_epsilon(); }


template <typename trainer_type>
void set_cache_size ( trainer_type& trainer, long cache_size)
{
    pyassert(cache_size > 0, "cache size must be > 0");
    trainer.set_cache_size(cache_size);
}
43

Davis King's avatar
Davis King committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
template <typename trainer_type>
long get_cache_size ( const trainer_type& trainer) { return trainer.get_cache_size(); }


template <typename trainer_type>
void set_c ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c(C);
}

template <typename trainer_type>
void set_c_class1 ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c_class1(C);
}

template <typename trainer_type>
void set_c_class2 ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c_class2(C);
}
68

Davis King's avatar
Davis King committed
69
70
71
72
73
74
template <typename trainer_type>
double get_c_class1 ( const trainer_type& trainer) { return trainer.get_c_class1(); }
template <typename trainer_type>
double get_c_class2 ( const trainer_type& trainer) { return trainer.get_c_class2(); }

template <typename trainer_type>
75
py::class_<trainer_type> setup_trainer_eps (
76
    py::module& m,
Davis King's avatar
Davis King committed
77
78
79
    const std::string& name
)
{
80
    return py::class_<trainer_type>(m, name.c_str())
Davis King's avatar
Davis King committed
81
        .def("train", train<trainer_type>)
82
        .def_property("epsilon", get_epsilon<trainer_type>, set_epsilon<trainer_type>);
Davis King's avatar
Davis King committed
83
84
85
}

template <typename trainer_type>
86
py::class_<trainer_type> setup_trainer_eps_c (
87
    py::module& m,
Davis King's avatar
Davis King committed
88
89
90
    const std::string& name
)
{
91
92
93
94
    return setup_trainer_eps<trainer_type>(m, name)
        .def("set_c", set_c<trainer_type>)
        .def_property("c_class1", get_c_class1<trainer_type>, set_c_class1<trainer_type>)
        .def_property("c_class2", get_c_class2<trainer_type>, set_c_class2<trainer_type>);
Davis King's avatar
Davis King committed
95
96
}

97
98
99
100
template <typename trainer_type>
py::class_<trainer_type> setup_trainer_eps_c_cache (
    py::module& m,
    const std::string& name
Davis King's avatar
Davis King committed
101
102
)
{
103
104
    return setup_trainer_eps_c<trainer_type>(m, name)
        .def_property("cache_size", get_cache_size<trainer_type>, set_cache_size<trainer_type>);
Davis King's avatar
Davis King committed
105
106
}

107
108
109
template <typename trainer_type>
void set_gamma (
    trainer_type& trainer,
Davis King's avatar
Davis King committed
110
    double gamma
111
112
)
{
Davis King's avatar
Davis King committed
113
    pyassert(gamma > 0, "gamma must be > 0");
114
    trainer.set_kernel(typename trainer_type::kernel_type(gamma));
Davis King's avatar
Davis King committed
115
}
116

117
118
119
template <typename trainer_type>
double get_gamma (
    const trainer_type& trainer
Davis King's avatar
Davis King committed
120
121
122
)
{
    return trainer.get_kernel().gamma;
123
124
}

125
126
127
128
129
130
131
132
133
// ----------------------------------------------------------------------------------------

template <
    typename trainer_type
    >
const binary_test _cross_validate_trainer (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& x,
    const std::vector<double>& y,
134
    const unsigned long folds
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
)
{
    pyassert(is_binary_classification_problem(x,y), "Training data does not make a valid training set.");
    pyassert(1 < folds && folds <= x.size(), "Invalid number of folds given.");
    return cross_validate_trainer(trainer, x, y, folds);
}

template <
    typename trainer_type
    >
const binary_test _cross_validate_trainer_t (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& x,
    const std::vector<double>& y,
    const unsigned long folds,
    const unsigned long num_threads
)
{
    pyassert(is_binary_classification_problem(x,y), "Training data does not make a valid training set.");
    pyassert(1 < folds && folds <= x.size(), "Invalid number of folds given.");
    pyassert(1 < num_threads, "The number of threads specified must not be zero.");
    return cross_validate_trainer_threaded(trainer, x, y, folds, num_threads);
}
158

Davis King's avatar
Davis King committed
159
160
// ----------------------------------------------------------------------------------------

161
void bind_svm_c_trainer(py::module& m)
162
{
163
    namespace py = pybind11;
164
165

    // svm_c
Davis King's avatar
Davis King committed
166
167
    {
        typedef svm_c_trainer<radial_basis_kernel<sample_type> > T;
168
169
170
        setup_trainer_eps_c_cache<T>(m, "svm_c_trainer_radial_basis")
            .def(py::init())
            .def_property("gamma", get_gamma<T>, set_gamma<T>);
171
172
173
174
        m.def("cross_validate_trainer", _cross_validate_trainer<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
Davis King's avatar
Davis King committed
175
176
177
178
    }

    {
        typedef svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> > T;
179
180
181
        setup_trainer_eps_c_cache<T>(m, "svm_c_trainer_sparse_radial_basis")
            .def(py::init())
            .def_property("gamma", get_gamma<T>, set_gamma<T>);
182
183
184
185
        m.def("cross_validate_trainer", _cross_validate_trainer<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
Davis King's avatar
Davis King committed
186
187
188
189
    }

    {
        typedef svm_c_trainer<histogram_intersection_kernel<sample_type> > T;
190
191
        setup_trainer_eps_c_cache<T>(m, "svm_c_trainer_histogram_intersection")
            .def(py::init());
192
193
194
195
        m.def("cross_validate_trainer", _cross_validate_trainer<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
Davis King's avatar
Davis King committed
196
197
198
199
    }

    {
        typedef svm_c_trainer<sparse_histogram_intersection_kernel<sparse_vect> > T;
200
201
        setup_trainer_eps_c_cache<T>(m, "svm_c_trainer_sparse_histogram_intersection")
            .def(py::init());
202
203
204
205
        m.def("cross_validate_trainer", _cross_validate_trainer<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
Davis King's avatar
Davis King committed
206
207
    }

208
    // svm_c_linear
Davis King's avatar
Davis King committed
209
210
    {
        typedef svm_c_linear_trainer<linear_kernel<sample_type> > T;
211
        setup_trainer_eps_c<T>(m, "svm_c_trainer_linear")
212
213
214
215
216
            .def(py::init())
            .def_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
            .def_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
            .def_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
            .def_property_readonly("has_prior", &T::has_prior)
217
            .def("set_prior", &T::set_prior)
Davis King's avatar
Davis King committed
218
219
220
            .def("be_verbose", &T::be_verbose)
            .def("be_quiet", &T::be_quiet);

221
222
223
224
        m.def("cross_validate_trainer", _cross_validate_trainer<T>,
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
Davis King's avatar
Davis King committed
225
226
227
228
    }

    {
        typedef svm_c_linear_trainer<sparse_linear_kernel<sparse_vect> > T;
229
230
        setup_trainer_eps_c<T>(m, "svm_c_trainer_sparse_linear")
            .def(py::init())
231
232
233
234
            .def_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
            .def_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
            .def_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
            .def_property_readonly("has_prior", &T::has_prior)
235
            .def("set_prior", &T::set_prior)
Davis King's avatar
Davis King committed
236
237
238
            .def("be_verbose", &T::be_verbose)
            .def("be_quiet", &T::be_quiet);

239
240
241
242
        m.def("cross_validate_trainer", _cross_validate_trainer<T>,
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
Davis King's avatar
Davis King committed
243
    }
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

    // rvm
    {
        typedef rvm_trainer<radial_basis_kernel<sample_type> > T;
        setup_trainer_eps<T>(m, "rvm_trainer_radial_basis")
            .def(py::init())
            .def_property("gamma", get_gamma<T>, set_gamma<T>);
        m.def("cross_validate_trainer", _cross_validate_trainer<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
    }

    {
        typedef rvm_trainer<sparse_radial_basis_kernel<sparse_vect> > T;
        setup_trainer_eps<T>(m, "rvm_trainer_sparse_radial_basis")
            .def(py::init())
            .def_property("gamma", get_gamma<T>, set_gamma<T>);
        m.def("cross_validate_trainer", _cross_validate_trainer<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
    }

    {
        typedef rvm_trainer<histogram_intersection_kernel<sample_type> > T;
        setup_trainer_eps<T>(m, "rvm_trainer_histogram_intersection")
            .def(py::init());
        m.def("cross_validate_trainer", _cross_validate_trainer<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
    }

    {
        typedef rvm_trainer<sparse_histogram_intersection_kernel<sparse_vect> > T;
        setup_trainer_eps<T>(m, "rvm_trainer_sparse_histogram_intersection")
            .def(py::init());
        m.def("cross_validate_trainer", _cross_validate_trainer<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
    }

    // rvm linear
    {
        typedef rvm_trainer<linear_kernel<sample_type> > T;
        setup_trainer_eps<T>(m, "rvm_trainer_linear")
            .def(py::init());
        m.def("cross_validate_trainer", _cross_validate_trainer<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
    }

    {
        typedef rvm_trainer<sparse_linear_kernel<sparse_vect> > T;
        setup_trainer_eps<T>(m, "rvm_trainer_sparse_linear")
            .def(py::init());
        m.def("cross_validate_trainer", _cross_validate_trainer<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
        m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
    }
308
309
310
}