svm_c_trainer.cpp 8.46 KB
Newer Older
1
2
// Copyright (C) 2013  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
3

4
#include "testing_results.h"
5
6
7
8
#include <boost/python.hpp>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include "serialize_pickle.h"
9
#include <dlib/svm_threaded.h>
Davis King's avatar
Davis King committed
10
#include "pyassert.h"
11
#include <boost/python/args.hpp>
12
13
14
15
16
17

using namespace dlib;
using namespace std;
using namespace boost::python;

typedef matrix<double,0,1> sample_type; 
Davis King's avatar
Davis King committed
18
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
19

Davis King's avatar
Davis King committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
template <typename trainer_type>
typename trainer_type::trained_function_type train (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& samples,
    const std::vector<double>& labels
)
{
    pyassert(is_binary_classification_problem(samples,labels), "Invalid inputs");
    return trainer.train(samples, labels);
}

template <typename trainer_type>
void set_epsilon ( trainer_type& trainer, double eps)
{
    pyassert(eps > 0, "epsilon must be > 0");
    trainer.set_epsilon(eps);
}

template <typename trainer_type>
double get_epsilon ( const trainer_type& trainer) { return trainer.get_epsilon(); }


template <typename trainer_type>
void set_cache_size ( trainer_type& trainer, long cache_size)
{
    pyassert(cache_size > 0, "cache size must be > 0");
    trainer.set_cache_size(cache_size);
}
48

Davis King's avatar
Davis King committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
template <typename trainer_type>
long get_cache_size ( const trainer_type& trainer) { return trainer.get_cache_size(); }


template <typename trainer_type>
void set_c ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c(C);
}

template <typename trainer_type>
void set_c_class1 ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c_class1(C);
}

template <typename trainer_type>
void set_c_class2 ( trainer_type& trainer, double C)
{
    pyassert(C > 0, "C must be > 0");
    trainer.set_c_class2(C);
}
73

Davis King's avatar
Davis King committed
74
75
76
77
78
79
80
81
82
83
84
85
86
template <typename trainer_type>
double get_c_class1 ( const trainer_type& trainer) { return trainer.get_c_class1(); }
template <typename trainer_type>
double get_c_class2 ( const trainer_type& trainer) { return trainer.get_c_class2(); }

template <typename trainer_type>
class_<trainer_type> setup_trainer (
    const std::string& name
)
{
    return class_<trainer_type>(name.c_str())
        .def("train", train<trainer_type>)
        .def("set_c", set_c<trainer_type>)
87
88
        .add_property("c_class1", get_c_class1<trainer_type>, set_c_class1<trainer_type>)
        .add_property("c_class2", get_c_class2<trainer_type>, set_c_class2<trainer_type>)
Davis King's avatar
Davis King committed
89
90
91
92
93
94
95
96
97
98
        .add_property("epsilon", get_epsilon<trainer_type>, set_epsilon<trainer_type>);
}

template <typename trainer_type>
class_<trainer_type> setup_trainer2 (
    const std::string& name
)
{

    return setup_trainer<trainer_type>(name)
99
        .add_property("cache_size", get_cache_size<trainer_type>, set_cache_size<trainer_type>);
Davis King's avatar
Davis King committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
}

void set_gamma (
    svm_c_trainer<radial_basis_kernel<sample_type> >& trainer,
    double gamma
)
{
    pyassert(gamma > 0, "gamma must be > 0");
    trainer.set_kernel(radial_basis_kernel<sample_type>(gamma));
}

double get_gamma (
    const svm_c_trainer<radial_basis_kernel<sample_type> >& trainer
)
{
    return trainer.get_kernel().gamma;
}

void set_gamma_sparse (
    svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> >& trainer,
    double gamma
121
122
)
{
Davis King's avatar
Davis King committed
123
124
125
    pyassert(gamma > 0, "gamma must be > 0");
    trainer.set_kernel(sparse_radial_basis_kernel<sparse_vect>(gamma));
}
126

Davis King's avatar
Davis King committed
127
128
129
130
131
double get_gamma_sparse (
    const svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> >& trainer
)
{
    return trainer.get_kernel().gamma;
132
133
}

134
135
136
137
138
139
140
141
142
// ----------------------------------------------------------------------------------------

template <
    typename trainer_type
    >
const binary_test _cross_validate_trainer (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& x,
    const std::vector<double>& y,
143
    const unsigned long folds
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
)
{
    pyassert(is_binary_classification_problem(x,y), "Training data does not make a valid training set.");
    pyassert(1 < folds && folds <= x.size(), "Invalid number of folds given.");
    return cross_validate_trainer(trainer, x, y, folds);
}

template <
    typename trainer_type
    >
const binary_test _cross_validate_trainer_t (
    const trainer_type& trainer,
    const std::vector<typename trainer_type::sample_type>& x,
    const std::vector<double>& y,
    const unsigned long folds,
    const unsigned long num_threads
)
{
    pyassert(is_binary_classification_problem(x,y), "Training data does not make a valid training set.");
    pyassert(1 < folds && folds <= x.size(), "Invalid number of folds given.");
    pyassert(1 < num_threads, "The number of threads specified must not be zero.");
    return cross_validate_trainer_threaded(trainer, x, y, folds, num_threads);
}
167

Davis King's avatar
Davis King committed
168
169
// ----------------------------------------------------------------------------------------

170
171
void bind_svm_c_trainer()
{
172
    using boost::python::arg;
Davis King's avatar
Davis King committed
173
174
175
176
    {
        typedef svm_c_trainer<radial_basis_kernel<sample_type> > T;
        setup_trainer2<T>("svm_c_trainer_radial_basis")
            .add_property("gamma", get_gamma, set_gamma);
177
178
179
180
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
181
182
183
184
185
    }

    {
        typedef svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> > T;
        setup_trainer2<T>("svm_c_trainer_sparse_radial_basis")
186
            .add_property("gamma", get_gamma_sparse, set_gamma_sparse);
187
188
189
190
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
191
192
193
194
195
    }

    {
        typedef svm_c_trainer<histogram_intersection_kernel<sample_type> > T;
        setup_trainer2<T>("svm_c_trainer_histogram_intersection");
196
197
198
199
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
200
201
202
203
204
    }

    {
        typedef svm_c_trainer<sparse_histogram_intersection_kernel<sparse_vect> > T;
        setup_trainer2<T>("svm_c_trainer_sparse_histogram_intersection");
205
206
207
208
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
209
210
211
212
213
214
215
216
217
218
219
    }

    {
        typedef svm_c_linear_trainer<linear_kernel<sample_type> > T;
        setup_trainer<T>("svm_c_trainer_linear")
            .add_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
            .add_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
            .add_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
            .def("be_verbose", &T::be_verbose)
            .def("be_quiet", &T::be_quiet);

220
221
222
223
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
224
225
226
227
228
229
230
231
232
233
234
    }

    {
        typedef svm_c_linear_trainer<sparse_linear_kernel<sparse_vect> > T;
        setup_trainer<T>("svm_c_trainer_sparse_linear")
            .add_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
            .add_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
            .add_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
            .def("be_verbose", &T::be_verbose)
            .def("be_quiet", &T::be_quiet);

235
236
237
238
        def("cross_validate_trainer", _cross_validate_trainer<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds")));
        def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>, 
            (arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
Davis King's avatar
Davis King committed
239
    }
240
241
242
}