test_lora_layers_peft.py 89.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import copy
16
import importlib
17
18
import os
import tempfile
19
import time
20
21
22
23
24
25
import unittest

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
26
from huggingface_hub import hf_hub_download
27
from huggingface_hub.repocard import RepoCard
28
from packaging import version
29
30
31
32
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
Patrick von Platen's avatar
Patrick von Platen committed
33
    AutoPipelineForImage2Image,
34
    ControlNetModel,
35
    DDIMScheduler,
36
    DiffusionPipeline,
37
    EulerDiscreteScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
38
    LCMScheduler,
39
    StableDiffusionPipeline,
40
    StableDiffusionXLControlNetPipeline,
41
42
43
44
    StableDiffusionXLPipeline,
    UNet2DConditionModel,
)
from diffusers.loaders import AttnProcsLayers
45
from diffusers.models.attention_processor import LoRAAttnProcessor, LoRAAttnProcessor2_0
46
47
48
49
50
from diffusers.utils.import_utils import is_accelerate_available, is_peft_available
from diffusers.utils.testing_utils import (
    floats_tensor,
    load_image,
    nightly,
Dhruv Nair's avatar
Dhruv Nair committed
51
    numpy_cosine_similarity_distance,
52
53
54
55
56
57
    require_peft_backend,
    require_torch_gpu,
    slow,
    torch_device,
)

58

59
60
if is_accelerate_available():
    from accelerate.utils import release_memory
61
62
63
64
65
66
67

if is_peft_available():
    from peft import LoraConfig
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


68
69
70
71
72
73
74
75
76
77
78
79
def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
def create_unet_lora_layers(unet: nn.Module):
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
        lora_attn_processor_class = (
            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
        )
        lora_attn_procs[name] = lora_attn_processor_class(
            hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
        )
    unet_lora_layers = AttnProcsLayers(lora_attn_procs)
    return lora_attn_procs, unet_lora_layers


@require_peft_backend
class PeftLoraLoaderMixinTests:
    torch_device = "cuda" if torch.cuda.is_available() else "cpu"
    pipeline_class = None
    scheduler_cls = None
    scheduler_kwargs = None
    has_two_text_encoders = False
    unet_kwargs = None
    vae_kwargs = None

Patrick von Platen's avatar
Patrick von Platen committed
112
113
    def get_dummy_components(self, scheduler_cls=None):
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else LCMScheduler
114
        rank = 4
Patrick von Platen's avatar
Patrick von Platen committed
115

116
117
        torch.manual_seed(0)
        unet = UNet2DConditionModel(**self.unet_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
118
        scheduler = scheduler_cls(**self.scheduler_kwargs)
119
120
121
122
123
124
125
126
127
128
        torch.manual_seed(0)
        vae = AutoencoderKL(**self.vae_kwargs)
        text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2")
        tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

        if self.has_two_text_encoders:
            text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2")
            tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

        text_lora_config = LoraConfig(
129
130
131
132
            r=rank,
            lora_alpha=rank,
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
            init_lora_weights=False,
133
134
        )

135
        unet_lora_config = LoraConfig(
136
            r=rank, lora_alpha=rank, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False
137
138
        )

139
140
141
142
143
144
145
146
147
148
149
        unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)

        if self.has_two_text_encoders:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "text_encoder_2": text_encoder_2,
                "tokenizer_2": tokenizer_2,
150
151
                "image_encoder": None,
                "feature_extractor": None,
152
153
154
155
156
157
158
159
160
161
            }
        else:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "safety_checker": None,
                "feature_extractor": None,
162
                "image_encoder": None,
163
164
165
166
167
            }
        lora_components = {
            "unet_lora_layers": unet_lora_layers,
            "unet_lora_attn_procs": unet_lora_attn_procs,
        }
168
        return pipeline_components, lora_components, text_lora_config, unet_lora_config
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

    # copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

    def check_if_lora_correctly_set(self, model) -> bool:
        """
        Checks if the LoRA layers are correctly set with peft
        """
        for module in model.modules():
            if isinstance(module, BaseTunerLayer):
                return True
        return False

    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
214
215
216
217
218
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
219

Patrick von Platen's avatar
Patrick von Platen committed
220
221
222
            _, _, inputs = self.get_dummy_inputs()
            output_no_lora = pipe(**inputs).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
223
224
225
226
227
228

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
229
230
231
232
233
234
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
235

Patrick von Platen's avatar
Patrick von Platen committed
236
237
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
238

Patrick von Platen's avatar
Patrick von Platen committed
239
            pipe.text_encoder.add_adapter(text_lora_config)
240
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
241
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
242
243
            )

Patrick von Platen's avatar
Patrick von Platen committed
244
245
246
247
248
249
250
251
252
253
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )
254
255
256
257
258
259

    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
263
264
265
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
266

Patrick von Platen's avatar
Patrick von Platen committed
267
268
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
269

Patrick von Platen's avatar
Patrick von Platen committed
270
            pipe.text_encoder.add_adapter(text_lora_config)
271
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
272
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
273
274
            )

Patrick von Platen's avatar
Patrick von Platen committed
275
276
277
278
279
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
280

Patrick von Platen's avatar
Patrick von Platen committed
281
282
283
284
            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )
285

Patrick von Platen's avatar
Patrick von Platen committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
            output_lora_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
            ).images
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

            output_lora_0_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
            ).images
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )
301
302
303
304
305
306

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
307
308
309
310
311
312
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
313

Patrick von Platen's avatar
Patrick von Platen committed
314
315
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
316

Patrick von Platen's avatar
Patrick von Platen committed
317
            pipe.text_encoder.add_adapter(text_lora_config)
318
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
319
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
320
321
            )

Patrick von Platen's avatar
Patrick von Platen committed
322
323
324
325
326
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
327

Patrick von Platen's avatar
Patrick von Platen committed
328
329
            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
330
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
331
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
332
333
            )

Patrick von Platen's avatar
Patrick von Platen committed
334
335
336
337
338
339
340
341
342
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )
343
344
345
346
347
348

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
349
350
351
352
353
354
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
355

Patrick von Platen's avatar
Patrick von Platen committed
356
357
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
358

Patrick von Platen's avatar
Patrick von Platen committed
359
            pipe.text_encoder.add_adapter(text_lora_config)
360
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
361
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
362
363
            )

Patrick von Platen's avatar
Patrick von Platen committed
364
365
366
367
368
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
369

Patrick von Platen's avatar
Patrick von Platen committed
370
371
            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
372
            self.assertFalse(
Patrick von Platen's avatar
Patrick von Platen committed
373
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
374
375
            )

Patrick von Platen's avatar
Patrick von Platen committed
376
377
378
379
380
381
382
383
384
385
386
            if self.has_two_text_encoders:
                self.assertFalse(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2),
                    "Lora not correctly unloaded in text encoder 2",
                )

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
387
388
389
390
391

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
Patrick von Platen's avatar
Patrick von Platen committed
392
393
394
395
396
397
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
398

Patrick von Platen's avatar
Patrick von Platen committed
399
400
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
401

Patrick von Platen's avatar
Patrick von Platen committed
402
            pipe.text_encoder.add_adapter(text_lora_config)
403
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
404
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
405
406
407
            )

            if self.has_two_text_encoders:
Patrick von Platen's avatar
Patrick von Platen committed
408
409
410
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
411
412
                )

Patrick von Platen's avatar
Patrick von Platen committed
413
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
414

Patrick von Platen's avatar
Patrick von Platen committed
415
416
417
418
            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
                if self.has_two_text_encoders:
                    text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
419

Patrick von Platen's avatar
Patrick von Platen committed
420
421
422
423
424
425
426
427
428
429
430
431
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        text_encoder_2_lora_layers=text_encoder_2_state_dict,
                        safe_serialization=False,
                    )
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        safe_serialization=False,
                    )
432

Patrick von Platen's avatar
Patrick von Platen committed
433
434
435
436
437
438
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
439
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
440
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
441
442
            )

Patrick von Platen's avatar
Patrick von Platen committed
443
444
445
446
447
448
449
450
451
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )
452
453
454
455
456

    def test_simple_inference_save_pretrained(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
Patrick von Platen's avatar
Patrick von Platen committed
457
458
459
460
461
462
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
463

Patrick von Platen's avatar
Patrick von Platen committed
464
465
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
466

Patrick von Platen's avatar
Patrick von Platen committed
467
            pipe.text_encoder.add_adapter(text_lora_config)
468
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
469
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
470
471
            )

Patrick von Platen's avatar
Patrick von Platen committed
472
473
474
475
476
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
477

Patrick von Platen's avatar
Patrick von Platen committed
478
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
479

Patrick von Platen's avatar
Patrick von Platen committed
480
481
            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)
482

Patrick von Platen's avatar
Patrick von Platen committed
483
484
                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(self.torch_device)
485
486

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
487
488
                self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                "Lora not correctly set in text encoder",
489
490
            )

Patrick von Platen's avatar
Patrick von Platen committed
491
492
493
494
495
496
497
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                    "Lora not correctly set in text encoder 2",
                )

            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images
498

Patrick von Platen's avatar
Patrick von Platen committed
499
500
501
502
            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )
503

504
505
506
507
    def test_simple_inference_with_text_unet_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
Patrick von Platen's avatar
Patrick von Platen committed
508
509
510
511
512
513
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
514

Patrick von Platen's avatar
Patrick von Platen committed
515
516
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
517

Patrick von Platen's avatar
Patrick von Platen committed
518
519
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
520
521

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
522
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
523
            )
Patrick von Platen's avatar
Patrick von Platen committed
524
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
525
526

            if self.has_two_text_encoders:
Patrick von Platen's avatar
Patrick von Platen committed
527
528
529
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
530
531
                )

Patrick von Platen's avatar
Patrick von Platen committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
                unet_state_dict = get_peft_model_state_dict(pipe.unet)
                if self.has_two_text_encoders:
                    text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)

                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        text_encoder_2_lora_layers=text_encoder_2_state_dict,
                        unet_lora_layers=unet_state_dict,
                        safe_serialization=False,
                    )
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        unet_lora_layers=unet_state_dict,
                        safe_serialization=False,
                    )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
565

Patrick von Platen's avatar
Patrick von Platen committed
566
567
568
569
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
570
571

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
572
573
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
574
            )
575

576
577
578
579
580
    def test_simple_inference_with_text_unet_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
597

Patrick von Platen's avatar
Patrick von Platen committed
598
599
600
601
602
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
603

Patrick von Platen's avatar
Patrick von Platen committed
604
            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
605
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
606
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
607
608
            )

Patrick von Platen's avatar
Patrick von Platen committed
609
610
611
612
613
614
615
            output_lora_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
            ).images
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )
616

Patrick von Platen's avatar
Patrick von Platen committed
617
618
619
620
621
622
623
            output_lora_0_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
            ).images
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )
624

Patrick von Platen's avatar
Patrick von Platen committed
625
626
627
628
            self.assertTrue(
                pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                "The scaling parameter has not been correctly restored!",
            )
629

630
631
632
633
634
    def test_simple_inference_with_text_lora_unet_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
Patrick von Platen's avatar
Patrick von Platen committed
635
636
637
638
639
640
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
641

Patrick von Platen's avatar
Patrick von Platen committed
642
643
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
644

Patrick von Platen's avatar
Patrick von Platen committed
645
646
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
647
648

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
649
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
650
            )
Patrick von Platen's avatar
Patrick von Platen committed
651
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
652

Patrick von Platen's avatar
Patrick von Platen committed
653
654
655
656
657
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
658

Patrick von Platen's avatar
Patrick von Platen committed
659
660
            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
661
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
662
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
663
            )
Patrick von Platen's avatar
Patrick von Platen committed
664
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in unet")
665

Patrick von Platen's avatar
Patrick von Platen committed
666
667
668
669
670
671
672
673
674
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )
675
676
677
678
679
680

    def test_simple_inference_with_text_unet_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
681
682
683
684
685
686
687
688
689
690
691
692
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
693
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
694
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
695
            )
Patrick von Platen's avatar
Patrick von Platen committed
696
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
697

Patrick von Platen's avatar
Patrick von Platen committed
698
699
700
701
702
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
703

Patrick von Platen's avatar
Patrick von Platen committed
704
705
            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
706
            self.assertFalse(
Patrick von Platen's avatar
Patrick von Platen committed
707
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
708
            )
Patrick von Platen's avatar
Patrick von Platen committed
709
            self.assertFalse(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly unloaded in Unet")
710

Patrick von Platen's avatar
Patrick von Platen committed
711
712
713
714
715
716
717
718
719
720
721
            if self.has_two_text_encoders:
                self.assertFalse(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2),
                    "Lora not correctly unloaded in text encoder 2",
                )

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
722

723
724
725
726
727
    def test_simple_inference_with_text_unet_lora_unfused(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
728
729
730
731
732
733
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
734

Patrick von Platen's avatar
Patrick von Platen committed
735
736
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
737

738
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
739
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
740
            )
Patrick von Platen's avatar
Patrick von Platen committed
741
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
742

Patrick von Platen's avatar
Patrick von Platen committed
743
744
745
746
747
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
748

Patrick von Platen's avatar
Patrick von Platen committed
749
            pipe.fuse_lora()
750

Patrick von Platen's avatar
Patrick von Platen committed
751
            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
752

Patrick von Platen's avatar
Patrick von Platen committed
753
            pipe.unfuse_lora()
754

Patrick von Platen's avatar
Patrick von Platen committed
755
756
            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            # unloading should remove the LoRA layers
757
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
758
                self.check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers"
759
            )
Patrick von Platen's avatar
Patrick von Platen committed
760
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Unfuse should still keep LoRA layers")
761

Patrick von Platen's avatar
Patrick von Platen committed
762
763
764
765
766
767
768
769
770
771
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                )

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
                np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
772
773
774
775
776
777

    def test_simple_inference_with_text_unet_multi_adapter(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Patrick von Platen's avatar
Patrick von Platen committed
778
779
780
781
782
783
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
784

Patrick von Platen's avatar
Patrick von Platen committed
785
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
786

Patrick von Platen's avatar
Patrick von Platen committed
787
788
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
789

Patrick von Platen's avatar
Patrick von Platen committed
790
791
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
792
793

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
794
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
795
            )
Patrick von Platen's avatar
Patrick von Platen committed
796
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
797

Patrick von Platen's avatar
Patrick von Platen committed
798
799
800
801
802
803
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
804

Patrick von Platen's avatar
Patrick von Platen committed
805
            pipe.set_adapters("adapter-1")
806

Patrick von Platen's avatar
Patrick von Platen committed
807
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
808

Patrick von Platen's avatar
Patrick von Platen committed
809
810
            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
811

Patrick von Platen's avatar
Patrick von Platen committed
812
            pipe.set_adapters(["adapter-1", "adapter-2"])
813

Patrick von Platen's avatar
Patrick von Platen committed
814
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
815

Patrick von Platen's avatar
Patrick von Platen committed
816
817
818
819
820
            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )
821

Patrick von Platen's avatar
Patrick von Platen committed
822
823
824
825
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )
826

Patrick von Platen's avatar
Patrick von Platen committed
827
828
829
830
            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )
831

Patrick von Platen's avatar
Patrick von Platen committed
832
            pipe.disable_lora()
833

Patrick von Platen's avatar
Patrick von Platen committed
834
835
836
837
838
839
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )
840

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
    def test_simple_inference_with_text_unet_multi_adapter_delete_adapter(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")

            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")

            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.set_adapters("adapter-1")

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

931
932
933
934
935
    def test_simple_inference_with_text_unet_multi_adapter_weighted(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Patrick von Platen's avatar
Patrick von Platen committed
936
937
938
939
940
941
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
942

Patrick von Platen's avatar
Patrick von Platen committed
943
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
944

Patrick von Platen's avatar
Patrick von Platen committed
945
946
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
947

Patrick von Platen's avatar
Patrick von Platen committed
948
949
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
950
951

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
952
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
953
            )
Patrick von Platen's avatar
Patrick von Platen committed
954
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
955

Patrick von Platen's avatar
Patrick von Platen committed
956
957
958
959
960
961
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
962

Patrick von Platen's avatar
Patrick von Platen committed
963
            pipe.set_adapters("adapter-1")
964

Patrick von Platen's avatar
Patrick von Platen committed
965
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
966

Patrick von Platen's avatar
Patrick von Platen committed
967
968
            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
969

Patrick von Platen's avatar
Patrick von Platen committed
970
            pipe.set_adapters(["adapter-1", "adapter-2"])
971

Patrick von Platen's avatar
Patrick von Platen committed
972
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
973

Patrick von Platen's avatar
Patrick von Platen committed
974
975
976
977
978
            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )
979

Patrick von Platen's avatar
Patrick von Platen committed
980
981
982
983
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )
984

Patrick von Platen's avatar
Patrick von Platen committed
985
986
987
988
            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )
989

Patrick von Platen's avatar
Patrick von Platen committed
990
991
            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images
992

Patrick von Platen's avatar
Patrick von Platen committed
993
994
995
996
            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )
997

Patrick von Platen's avatar
Patrick von Platen committed
998
            pipe.disable_lora()
999

Patrick von Platen's avatar
Patrick von Platen committed
1000
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images
1001

Patrick von Platen's avatar
Patrick von Platen committed
1002
1003
1004
1005
            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )
1006

Patrick von Platen's avatar
Patrick von Platen committed
1007
1008
1009
1010
1011
1012
1013
    def test_lora_fuse_nan(self):
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1014

Patrick von Platen's avatar
Patrick von Platen committed
1015
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1016

Patrick von Platen's avatar
Patrick von Platen committed
1017
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1018

Patrick von Platen's avatar
Patrick von Platen committed
1019
1020
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
1021
            )
Patrick von Platen's avatar
Patrick von Platen committed
1022
1023
1024
1025
1026
1027
1028
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
                pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float(
                    "inf"
                )
1029

Patrick von Platen's avatar
Patrick von Platen committed
1030
1031
1032
            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
                pipe.fuse_lora(safe_fusing=True)
1033

Patrick von Platen's avatar
Patrick von Platen committed
1034
1035
            # without we should not see an error, but every image will be black
            pipe.fuse_lora(safe_fusing=False)
1036

Patrick von Platen's avatar
Patrick von Platen committed
1037
            out = pipe("test", num_inference_steps=2, output_type="np").images
1038

Patrick von Platen's avatar
Patrick von Platen committed
1039
            self.assertTrue(np.isnan(out).all())
1040
1041
1042
1043
1044
1045

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Patrick von Platen's avatar
Patrick von Platen committed
1046
1047
1048
1049
1050
1051
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1052

Patrick von Platen's avatar
Patrick von Platen committed
1053
1054
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1055

Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])
1058

Patrick von Platen's avatar
Patrick von Platen committed
1059
1060
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
1061

Patrick von Platen's avatar
Patrick von Platen committed
1062
1063
            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])
1064

Patrick von Platen's avatar
Patrick von Platen committed
1065
1066
            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])
1067
1068
1069
1070
1071
1072

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Patrick von Platen's avatar
Patrick von Platen committed
1073
1074
1075
1076
1077
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
1078

Patrick von Platen's avatar
Patrick von Platen committed
1079
1080
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1081

Patrick von Platen's avatar
Patrick von Platen committed
1082
1083
            adapter_names = pipe.get_list_adapters()
            self.assertDictEqual(adapter_names, {"text_encoder": ["adapter-1"], "unet": ["adapter-1"]})
1084

Patrick von Platen's avatar
Patrick von Platen committed
1085
1086
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
1087

Patrick von Platen's avatar
Patrick von Platen committed
1088
1089
1090
1091
            adapter_names = pipe.get_list_adapters()
            self.assertDictEqual(
                adapter_names, {"text_encoder": ["adapter-1", "adapter-2"], "unet": ["adapter-1", "adapter-2"]}
            )
1092

Patrick von Platen's avatar
Patrick von Platen committed
1093
1094
1095
1096
1097
            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertDictEqual(
                pipe.get_list_adapters(),
                {"unet": ["adapter-1", "adapter-2"], "text_encoder": ["adapter-1", "adapter-2"]},
            )
1098

Patrick von Platen's avatar
Patrick von Platen committed
1099
1100
1101
1102
1103
            pipe.unet.add_adapter(unet_lora_config, "adapter-3")
            self.assertDictEqual(
                pipe.get_list_adapters(),
                {"unet": ["adapter-1", "adapter-2", "adapter-3"], "text_encoder": ["adapter-1", "adapter-2"]},
            )
1104
1105
1106
1107
1108
1109
1110

    @unittest.skip("This is failing for now - need to investigate")
    def test_simple_inference_with_text_unet_lora_unfused_torch_compile(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
1111
1112
1113
1114
1115
1116
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1117

Patrick von Platen's avatar
Patrick von Platen committed
1118
1119
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
1120
1121

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
1122
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
1123
            )
Patrick von Platen's avatar
Patrick von Platen committed
1124
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
1125

Patrick von Platen's avatar
Patrick von Platen committed
1126
1127
1128
1129
1130
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
1131

Patrick von Platen's avatar
Patrick von Platen committed
1132
1133
1134
1135
1136
            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

            if self.has_two_text_encoders:
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)
1137

Patrick von Platen's avatar
Patrick von Platen committed
1138
1139
            # Just makes sure it works..
            _ = pipe(**inputs, generator=torch.manual_seed(0)).images
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345


class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
    pipeline_class = StableDiffusionPipeline
    scheduler_cls = DDIMScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "clip_sample": False,
        "set_alpha_to_one": False,
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "cross_attention_dim": 32,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
    }

    @slow
    @require_torch_gpu
    def test_integration_move_lora_cpu(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_id, adapter_name="adapter-1")
        pipe.load_lora_weights(lora_id, adapter_name="adapter-2")
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder",
        )

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.unet),
            "Lora not correctly set in text encoder",
        )

        # We will offload the first adapter in CPU and check if the offloading
        # has been performed correctly
        pipe.set_lora_device(["adapter-1"], "cpu")

        for name, module in pipe.unet.named_modules():
            if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device == torch.device("cpu"))
            elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device != torch.device("cpu"))

        for name, module in pipe.text_encoder.named_modules():
            if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device == torch.device("cpu"))
            elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device != torch.device("cpu"))

        pipe.set_lora_device(["adapter-1"], 0)

        for n, m in pipe.unet.named_modules():
            if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        for n, m in pipe.text_encoder.named_modules():
            if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        pipe.set_lora_device(["adapter-1", "adapter-2"], "cuda")

        for n, m in pipe.unet.named_modules():
            if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        for n, m in pipe.text_encoder.named_modules():
            if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

    @slow
    @require_torch_gpu
    def test_integration_logits_with_scale(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
        pipe.load_lora_weights(lora_id)
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder 2",
        )

        prompt = "a red sks dog"

        images = pipe(
            prompt=prompt,
            num_inference_steps=15,
            cross_attention_kwargs={"scale": 0.5},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images

        expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321])

        predicted_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

    @slow
    @require_torch_gpu
    def test_integration_logits_no_scale(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
        pipe.load_lora_weights(lora_id)
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder",
        )

        prompt = "a red sks dog"

        images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images

        expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084])

        predicted_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

    @nightly
    @require_torch_gpu
    def test_integration_logits_multi_adapter(self):
        path = "stabilityai/stable-diffusion-xl-base-1.0"
        lora_id = "CiroN2022/toy-face"

        pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.unet),
            "Lora not correctly set in Unet",
        )

        prompt = "toy_face of a hacker with a hoodie"

        lora_scale = 0.9

        images = pipe(
            prompt=prompt,
            num_inference_steps=30,
            generator=torch.manual_seed(0),
            cross_attention_kwargs={"scale": lora_scale},
            output_type="np",
        ).images
        expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539])

        predicted_slice = images[0, -3:, -3:, -1].flatten()
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipe.set_adapters("pixel")

        prompt = "pixel art, a hacker with a hoodie, simple, flat colors"
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": lora_scale},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images

        predicted_slice = images[0, -3:, -3:, -1].flatten()
        expected_slice_scale = np.array(
            [0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889]
        )
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        # multi-adapter inference
        pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": 1.0},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images
        predicted_slice = images[0, -3:, -3:, -1].flatten()
1346
        expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909])
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        # Lora disabled
        pipe.disable_lora()
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": lora_scale},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images
        predicted_slice = images[0, -3:, -3:, -1].flatten()
1360
        expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487])
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))


class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
    has_two_text_encoders = True
    pipeline_class = StableDiffusionXLPipeline
    scheduler_cls = EulerDiscreteScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "timestep_spacing": "leading",
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "attention_head_dim": (2, 4),
        "use_linear_projection": True,
        "addition_embed_type": "text_time",
        "addition_time_embed_dim": 8,
        "transformer_layers_per_block": (1, 2),
        "projection_class_embeddings_input_dim": 80,  # 6 * 8 + 32
        "cross_attention_dim": 64,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
        "sample_size": 128,
    }
1400
1401
1402
1403


@slow
@require_torch_gpu
1404
class LoraIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase):
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
    def tearDown(self):
        import gc

        gc.collect()
        torch.cuda.empty_cache()
        gc.collect()

    def test_dreambooth_old_format(self):
        generator = torch.Generator("cpu").manual_seed(0)

        lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe(
            "A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_dreambooth_text_encoder_new_format(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/lora-trained"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_a1111(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_lycoris(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16"
        ).to(torch_device)
        lora_model_id = "hf-internal-testing/edgLycorisMugler-light"
        lora_filename = "edgLycorisMugler-light.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_a1111_with_model_cpu_offload(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_a1111_with_sequential_cpu_offload(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
        pipe.enable_sequential_cpu_offload()
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_kohya_sd_v15_with_higher_dimensions(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/urushisato-lora"
        lora_filename = "urushisato_v15.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_vanilla_funetuning(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_unload_kohya_lora(self):
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
        release_memory(pipe)

    def test_load_unload_load_kohya_lora(self):
        # This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded
        # without introducing any side-effects. Even though the test uses a Kohya-style
        # LoRA, the underlying adapter handling mechanism is format-agnostic.
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))

        # make sure we can load a LoRA again after unloading and they don't have
        # any undesired effects.
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images_again = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3))
        release_memory(pipe)


@slow
@require_torch_gpu
1657
class LoraSDXLIntegrationTests(PeftLoraLoaderMixinTests, unittest.TestCase):
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
    def tearDown(self):
        import gc

        gc.collect()
        torch.cuda.empty_cache()
        gc.collect()

    def test_sdxl_0_9_lora_one(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora"
        lora_filename = "daiton-xl-lora-test.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_0_9_lora_two(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora"
        lora_filename = "saijo.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_0_9_lora_three(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora"
        lora_filename = "kame_sdxl_v2-000020-16rank.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468])

        self.assertTrue(np.allclose(images, expected, atol=5e-3))
        release_memory(pipe)

    def test_sdxl_1_0_lora(self):
Dhruv Nair's avatar
Dhruv Nair committed
1723
        generator = torch.Generator("cpu").manual_seed(0)
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

Patrick von Platen's avatar
Patrick von Platen committed
1741
1742
1743
1744
1745
    def test_sdxl_lcm_lora(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()

Dhruv Nair's avatar
Dhruv Nair committed
1746
        generator = torch.Generator("cpu").manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762

        lora_model_id = "latent-consistency/lcm-lora-sdxl"

        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

Dhruv Nair's avatar
Dhruv Nair committed
1763
1764
        max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
        assert max_diff < 1e-4
Patrick von Platen's avatar
Patrick von Platen committed
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774

        pipe.unload_lora_weights()

        release_memory(pipe)

    def test_sdv1_5_lcm_lora(self):
        pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

Dhruv Nair's avatar
Dhruv Nair committed
1775
        generator = torch.Generator("cpu").manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790

        lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

Dhruv Nair's avatar
Dhruv Nair committed
1791
1792
        max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
        assert max_diff < 1e-4
Patrick von Platen's avatar
Patrick von Platen committed
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806

        pipe.unload_lora_weights()

        release_memory(pipe)

    def test_sdv1_5_lcm_lora_img2img(self):
        pipe = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.png"
        )

Dhruv Nair's avatar
Dhruv Nair committed
1807
        generator = torch.Generator("cpu").manual_seed(0)
Patrick von Platen's avatar
Patrick von Platen committed
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827

        lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "snowy mountain",
            generator=generator,
            image=init_image,
            strength=0.5,
            num_inference_steps=4,
            guidance_scale=0.5,
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora_img2img.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

Dhruv Nair's avatar
Dhruv Nair committed
1828
1829
        max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
        assert max_diff < 1e-4
Patrick von Platen's avatar
Patrick von Platen committed
1830
1831
1832
1833
1834

        pipe.unload_lora_weights()

        release_memory(pipe)

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
    def test_sdxl_1_0_lora_fusion(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        pipe.fuse_lora()
        # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
        # silently deleted - otherwise this will CPU OOM
        pipe.unload_lora_weights()

        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        # This way we also test equivalence between LoRA fusion and the non-fusion behaviour.
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_sdxl_1_0_lora_unfusion(self):
Dhruv Nair's avatar
Dhruv Nair committed
1862
        generator = torch.Generator("cpu").manual_seed(0)
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()

        pipe.enable_model_cpu_offload()

        images = pipe(
Dhruv Nair's avatar
Dhruv Nair committed
1873
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
1874
        ).images
Dhruv Nair's avatar
Dhruv Nair committed
1875
        images_with_fusion = images.flatten()
1876
1877

        pipe.unfuse_lora()
Dhruv Nair's avatar
Dhruv Nair committed
1878
        generator = torch.Generator("cpu").manual_seed(0)
1879
        images = pipe(
Dhruv Nair's avatar
Dhruv Nair committed
1880
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
1881
        ).images
Dhruv Nair's avatar
Dhruv Nair committed
1882
        images_without_fusion = images.flatten()
1883

Dhruv Nair's avatar
Dhruv Nair committed
1884
1885
1886
        max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion)
        assert max_diff < 1e-4

1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
        release_memory(pipe)

    def test_sdxl_1_0_lora_unfusion_effectivity(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        original_image_slice = images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        _ = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        pipe.unfuse_lora()

        # We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights
        pipe.unload_lora_weights()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        images_without_fusion_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(original_image_slice, images_without_fusion_slice, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_1_0_lora_fusion_efficiency(self):
        generator = torch.Generator().manual_seed(0)
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"

Dhruv Nair's avatar
Dhruv Nair committed
1928
1929
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
        pipe.enable_model_cpu_offload()

        start_time = time.time()
        for _ in range(3):
            pipe(
                "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
            ).images
        end_time = time.time()
        elapsed_time_non_fusion = end_time - start_time

        del pipe

Dhruv Nair's avatar
Dhruv Nair committed
1942
1943
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
1944
        pipe.fuse_lora()
Dhruv Nair's avatar
Dhruv Nair committed
1945

1946
1947
1948
1949
1950
1951
        # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
        # silently deleted - otherwise this will CPU OOM
        pipe.unload_lora_weights()
        pipe.enable_model_cpu_offload()

        generator = torch.Generator().manual_seed(0)
Dhruv Nair's avatar
Dhruv Nair committed
1952
        start_time = time.time()
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
        for _ in range(3):
            pipe(
                "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
            ).images
        end_time = time.time()
        elapsed_time_fusion = end_time - start_time

        self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion)
        release_memory(pipe)

    def test_sdxl_1_0_last_ben(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "TheLastBen/Papercut_SDXL"
        lora_filename = "papercut.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_1_0_fuse_unfuse_all(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
        text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
        unet_sd = copy.deepcopy(pipe.unet.state_dict())

        pipe.load_lora_weights(
            "davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16
        )

        fused_te_state_dict = pipe.text_encoder.state_dict()
        fused_te_2_state_dict = pipe.text_encoder_2.state_dict()
        unet_state_dict = pipe.unet.state_dict()

1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
        peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0")

        def remap_key(key, sd):
            # some keys have moved around for PEFT >= 0.7.0, but they should still be loaded correctly
            if (key in sd) or (not peft_ge_070):
                return key

            # instead of linear.weight, we now have linear.base_layer.weight, etc.
            if key.endswith(".weight"):
                key = key[:-7] + ".base_layer.weight"
            elif key.endswith(".bias"):
                key = key[:-5] + ".base_layer.bias"
            return key

2008
        for key, value in text_encoder_1_sd.items():
2009
            key = remap_key(key, fused_te_state_dict)
2010
2011
2012
            self.assertTrue(torch.allclose(fused_te_state_dict[key], value))

        for key, value in text_encoder_2_sd.items():
2013
            key = remap_key(key, fused_te_2_state_dict)
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
            self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value))

        for key, value in unet_state_dict.items():
            self.assertTrue(torch.allclose(unet_state_dict[key], value))

        pipe.fuse_lora()
        pipe.unload_lora_weights()

        assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict())
        assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict())
        assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict())
        release_memory(pipe)
        del unet_sd, text_encoder_1_sd, text_encoder_2_sd

    def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_sequential_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
    def test_sd_load_civitai_empty_network_alpha(self):
        """
        This test simply checks that loading a LoRA with an empty network alpha works fine
        See: https://github.com/huggingface/diffusers/issues/5606
        """
        pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("cuda")
        pipeline.enable_sequential_cpu_offload()
        civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors")
        pipeline.load_lora_weights(civitai_path, adapter_name="ahri")

        images = pipeline(
            "ahri, masterpiece, league of legends",
            output_type="np",
            generator=torch.manual_seed(156),
            num_inference_steps=5,
        ).images
        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.0, 0.0, 0.0, 0.002557, 0.020954, 0.001792, 0.006581, 0.00591, 0.002995])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipeline)

2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
    def test_canny_lora(self):
        controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")

        pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
        )
        pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
        pipe.enable_sequential_cpu_offload()

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "corgi"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images

        assert images[0].shape == (768, 512, 3)

        original_image = images[0, -3:, -3:, -1].flatten()
        expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333])
        assert np.allclose(original_image, expected_image, atol=1e-04)
        release_memory(pipe)

    @nightly
    def test_sequential_fuse_unfuse(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)

        # 1. round
        pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        image_slice = images[0, -3:, -3:, -1].flatten()

        pipe.unfuse_lora()

        # 2. round
        pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16)
        pipe.fuse_lora()
        pipe.unfuse_lora()

        # 3. round
        pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16)
        pipe.fuse_lora()
        pipe.unfuse_lora()

        # 4. back to 1st round
        pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        images_2 = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        image_slice_2 = images_2[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(image_slice, image_slice_2, atol=1e-3))
        release_memory(pipe)