test_lora_layers_peft.py 88.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
import copy
16
17
import os
import tempfile
18
import time
19
20
21
22
23
24
import unittest

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
25
from huggingface_hub import hf_hub_download
26
from huggingface_hub.repocard import RepoCard
27
28
29
30
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
Patrick von Platen's avatar
Patrick von Platen committed
31
    AutoPipelineForImage2Image,
32
    ControlNetModel,
33
    DDIMScheduler,
34
    DiffusionPipeline,
35
    EulerDiscreteScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
36
    LCMScheduler,
37
    StableDiffusionPipeline,
38
    StableDiffusionXLControlNetPipeline,
39
40
41
42
43
44
45
46
    StableDiffusionXLPipeline,
    UNet2DConditionModel,
)
from diffusers.loaders import AttnProcsLayers
from diffusers.models.attention_processor import (
    LoRAAttnProcessor,
    LoRAAttnProcessor2_0,
)
47
48
49
50
51
52
53
54
55
56
57
from diffusers.utils.import_utils import is_accelerate_available, is_peft_available
from diffusers.utils.testing_utils import (
    floats_tensor,
    load_image,
    nightly,
    require_peft_backend,
    require_torch_gpu,
    slow,
    torch_device,
)

58

59
60
if is_accelerate_available():
    from accelerate.utils import release_memory
61
62
63
64
65
66
67

if is_peft_available():
    from peft import LoraConfig
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


68
69
70
71
72
73
74
75
76
77
78
79
def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
def create_unet_lora_layers(unet: nn.Module):
    lora_attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
        lora_attn_processor_class = (
            LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
        )
        lora_attn_procs[name] = lora_attn_processor_class(
            hidden_size=hidden_size, cross_attention_dim=cross_attention_dim
        )
    unet_lora_layers = AttnProcsLayers(lora_attn_procs)
    return lora_attn_procs, unet_lora_layers


@require_peft_backend
class PeftLoraLoaderMixinTests:
    torch_device = "cuda" if torch.cuda.is_available() else "cpu"
    pipeline_class = None
    scheduler_cls = None
    scheduler_kwargs = None
    has_two_text_encoders = False
    unet_kwargs = None
    vae_kwargs = None

Patrick von Platen's avatar
Patrick von Platen committed
112
113
114
    def get_dummy_components(self, scheduler_cls=None):
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else LCMScheduler

115
116
        torch.manual_seed(0)
        unet = UNet2DConditionModel(**self.unet_kwargs)
Patrick von Platen's avatar
Patrick von Platen committed
117
        scheduler = scheduler_cls(**self.scheduler_kwargs)
118
119
120
121
122
123
124
125
126
127
128
129
130
        torch.manual_seed(0)
        vae = AutoencoderKL(**self.vae_kwargs)
        text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2")
        tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

        if self.has_two_text_encoders:
            text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2")
            tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2")

        text_lora_config = LoraConfig(
            r=4, lora_alpha=4, target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], init_lora_weights=False
        )

131
132
133
134
        unet_lora_config = LoraConfig(
            r=4, lora_alpha=4, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False
        )

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        unet_lora_attn_procs, unet_lora_layers = create_unet_lora_layers(unet)

        if self.has_two_text_encoders:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "text_encoder_2": text_encoder_2,
                "tokenizer_2": tokenizer_2,
            }
        else:
            pipeline_components = {
                "unet": unet,
                "scheduler": scheduler,
                "vae": vae,
                "text_encoder": text_encoder,
                "tokenizer": tokenizer,
                "safety_checker": None,
                "feature_extractor": None,
            }
        lora_components = {
            "unet_lora_layers": unet_lora_layers,
            "unet_lora_attn_procs": unet_lora_attn_procs,
        }
161
        return pipeline_components, lora_components, text_lora_config, unet_lora_config
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

    # copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

    def check_if_lora_correctly_set(self, model) -> bool:
        """
        Checks if the LoRA layers are correctly set with peft
        """
        for module in model.modules():
            if isinstance(module, BaseTunerLayer):
                return True
        return False

    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
207
208
209
210
211
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
212

Patrick von Platen's avatar
Patrick von Platen committed
213
214
215
            _, _, inputs = self.get_dummy_inputs()
            output_no_lora = pipe(**inputs).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
216
217
218
219
220
221

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
222
223
224
225
226
227
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
228

Patrick von Platen's avatar
Patrick von Platen committed
229
230
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
231

Patrick von Platen's avatar
Patrick von Platen committed
232
            pipe.text_encoder.add_adapter(text_lora_config)
233
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
234
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
235
236
            )

Patrick von Platen's avatar
Patrick von Platen committed
237
238
239
240
241
242
243
244
245
246
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )
247
248
249
250
251
252

    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
253
254
255
256
257
258
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
259

Patrick von Platen's avatar
Patrick von Platen committed
260
261
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
262

Patrick von Platen's avatar
Patrick von Platen committed
263
            pipe.text_encoder.add_adapter(text_lora_config)
264
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
265
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
266
267
            )

Patrick von Platen's avatar
Patrick von Platen committed
268
269
270
271
272
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
273

Patrick von Platen's avatar
Patrick von Platen committed
274
275
276
277
            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )
278

Patrick von Platen's avatar
Patrick von Platen committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
            output_lora_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
            ).images
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

            output_lora_0_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
            ).images
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )
294
295
296
297
298
299

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
300
301
302
303
304
305
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
306

Patrick von Platen's avatar
Patrick von Platen committed
307
308
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
309

Patrick von Platen's avatar
Patrick von Platen committed
310
            pipe.text_encoder.add_adapter(text_lora_config)
311
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
312
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
313
314
            )

Patrick von Platen's avatar
Patrick von Platen committed
315
316
317
318
319
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
320

Patrick von Platen's avatar
Patrick von Platen committed
321
322
            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
323
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
324
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
325
326
            )

Patrick von Platen's avatar
Patrick von Platen committed
327
328
329
330
331
332
333
334
335
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )
336
337
338
339
340
341

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
342
343
344
345
346
347
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
348

Patrick von Platen's avatar
Patrick von Platen committed
349
350
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
351

Patrick von Platen's avatar
Patrick von Platen committed
352
            pipe.text_encoder.add_adapter(text_lora_config)
353
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
354
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
355
356
            )

Patrick von Platen's avatar
Patrick von Platen committed
357
358
359
360
361
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
362

Patrick von Platen's avatar
Patrick von Platen committed
363
364
            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
365
            self.assertFalse(
Patrick von Platen's avatar
Patrick von Platen committed
366
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
367
368
            )

Patrick von Platen's avatar
Patrick von Platen committed
369
370
371
372
373
374
375
376
377
378
379
            if self.has_two_text_encoders:
                self.assertFalse(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2),
                    "Lora not correctly unloaded in text encoder 2",
                )

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
380
381
382
383
384

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
Patrick von Platen's avatar
Patrick von Platen committed
385
386
387
388
389
390
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
391

Patrick von Platen's avatar
Patrick von Platen committed
392
393
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
394

Patrick von Platen's avatar
Patrick von Platen committed
395
            pipe.text_encoder.add_adapter(text_lora_config)
396
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
397
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
398
399
400
            )

            if self.has_two_text_encoders:
Patrick von Platen's avatar
Patrick von Platen committed
401
402
403
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
404
405
                )

Patrick von Platen's avatar
Patrick von Platen committed
406
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
407

Patrick von Platen's avatar
Patrick von Platen committed
408
409
410
411
            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
                if self.has_two_text_encoders:
                    text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
412

Patrick von Platen's avatar
Patrick von Platen committed
413
414
415
416
417
418
419
420
421
422
423
424
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        text_encoder_2_lora_layers=text_encoder_2_state_dict,
                        safe_serialization=False,
                    )
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        safe_serialization=False,
                    )
425

Patrick von Platen's avatar
Patrick von Platen committed
426
427
428
429
430
431
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
432
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
433
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
434
435
            )

Patrick von Platen's avatar
Patrick von Platen committed
436
437
438
439
440
441
442
443
444
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )
445
446
447
448
449

    def test_simple_inference_save_pretrained(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
Patrick von Platen's avatar
Patrick von Platen committed
450
451
452
453
454
455
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
456

Patrick von Platen's avatar
Patrick von Platen committed
457
458
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
459

Patrick von Platen's avatar
Patrick von Platen committed
460
            pipe.text_encoder.add_adapter(text_lora_config)
461
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
462
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
463
464
            )

Patrick von Platen's avatar
Patrick von Platen committed
465
466
467
468
469
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
470

Patrick von Platen's avatar
Patrick von Platen committed
471
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
472

Patrick von Platen's avatar
Patrick von Platen committed
473
474
            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)
475

Patrick von Platen's avatar
Patrick von Platen committed
476
477
                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(self.torch_device)
478
479

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
480
481
                self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                "Lora not correctly set in text encoder",
482
483
            )

Patrick von Platen's avatar
Patrick von Platen committed
484
485
486
487
488
489
490
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                    "Lora not correctly set in text encoder 2",
                )

            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images
491

Patrick von Platen's avatar
Patrick von Platen committed
492
493
494
495
            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )
496

497
498
499
500
    def test_simple_inference_with_text_unet_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
Patrick von Platen's avatar
Patrick von Platen committed
501
502
503
504
505
506
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
507

Patrick von Platen's avatar
Patrick von Platen committed
508
509
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
510

Patrick von Platen's avatar
Patrick von Platen committed
511
512
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
513
514

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
515
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
516
            )
Patrick von Platen's avatar
Patrick von Platen committed
517
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
518
519

            if self.has_two_text_encoders:
Patrick von Platen's avatar
Patrick von Platen committed
520
521
522
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
523
524
                )

Patrick von Platen's avatar
Patrick von Platen committed
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
                unet_state_dict = get_peft_model_state_dict(pipe.unet)
                if self.has_two_text_encoders:
                    text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)

                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        text_encoder_2_lora_layers=text_encoder_2_state_dict,
                        unet_lora_layers=unet_state_dict,
                        safe_serialization=False,
                    )
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        unet_lora_layers=unet_state_dict,
                        safe_serialization=False,
                    )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
558

Patrick von Platen's avatar
Patrick von Platen committed
559
560
561
562
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
563
564

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
565
566
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
567
            )
568

569
570
571
572
573
    def test_simple_inference_with_text_unet_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
590

Patrick von Platen's avatar
Patrick von Platen committed
591
592
593
594
595
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
596

Patrick von Platen's avatar
Patrick von Platen committed
597
            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
598
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
599
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
600
601
            )

Patrick von Platen's avatar
Patrick von Platen committed
602
603
604
605
606
607
608
            output_lora_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
            ).images
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )
609

Patrick von Platen's avatar
Patrick von Platen committed
610
611
612
613
614
615
616
            output_lora_0_scale = pipe(
                **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
            ).images
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )
617

Patrick von Platen's avatar
Patrick von Platen committed
618
619
620
621
            self.assertTrue(
                pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                "The scaling parameter has not been correctly restored!",
            )
622

623
624
625
626
627
    def test_simple_inference_with_text_lora_unet_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
Patrick von Platen's avatar
Patrick von Platen committed
628
629
630
631
632
633
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
634

Patrick von Platen's avatar
Patrick von Platen committed
635
636
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))
637

Patrick von Platen's avatar
Patrick von Platen committed
638
639
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
640
641

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
642
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
643
            )
Patrick von Platen's avatar
Patrick von Platen committed
644
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
645

Patrick von Platen's avatar
Patrick von Platen committed
646
647
648
649
650
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
651

Patrick von Platen's avatar
Patrick von Platen committed
652
653
            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
654
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
655
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
656
            )
Patrick von Platen's avatar
Patrick von Platen committed
657
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in unet")
658

Patrick von Platen's avatar
Patrick von Platen committed
659
660
661
662
663
664
665
666
667
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )
668
669
670
671
672
673

    def test_simple_inference_with_text_unet_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
674
675
676
677
678
679
680
681
682
683
684
685
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(output_no_lora.shape == (1, 64, 64, 3))

            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
686
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
687
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
688
            )
Patrick von Platen's avatar
Patrick von Platen committed
689
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
690

Patrick von Platen's avatar
Patrick von Platen committed
691
692
693
694
695
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
696

Patrick von Platen's avatar
Patrick von Platen committed
697
698
            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
699
            self.assertFalse(
Patrick von Platen's avatar
Patrick von Platen committed
700
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
701
            )
Patrick von Platen's avatar
Patrick von Platen committed
702
            self.assertFalse(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly unloaded in Unet")
703

Patrick von Platen's avatar
Patrick von Platen committed
704
705
706
707
708
709
710
711
712
713
714
            if self.has_two_text_encoders:
                self.assertFalse(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2),
                    "Lora not correctly unloaded in text encoder 2",
                )

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
715

716
717
718
719
720
    def test_simple_inference_with_text_unet_lora_unfused(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
721
722
723
724
725
726
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
727

Patrick von Platen's avatar
Patrick von Platen committed
728
729
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
730

731
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
732
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
733
            )
Patrick von Platen's avatar
Patrick von Platen committed
734
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
735

Patrick von Platen's avatar
Patrick von Platen committed
736
737
738
739
740
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
741

Patrick von Platen's avatar
Patrick von Platen committed
742
            pipe.fuse_lora()
743

Patrick von Platen's avatar
Patrick von Platen committed
744
            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
745

Patrick von Platen's avatar
Patrick von Platen committed
746
            pipe.unfuse_lora()
747

Patrick von Platen's avatar
Patrick von Platen committed
748
749
            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            # unloading should remove the LoRA layers
750
            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
751
                self.check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers"
752
            )
Patrick von Platen's avatar
Patrick von Platen committed
753
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Unfuse should still keep LoRA layers")
754

Patrick von Platen's avatar
Patrick von Platen committed
755
756
757
758
759
760
761
762
763
764
            if self.has_two_text_encoders:
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                )

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
                np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )
765
766
767
768
769
770

    def test_simple_inference_with_text_unet_multi_adapter(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Patrick von Platen's avatar
Patrick von Platen committed
771
772
773
774
775
776
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
777

Patrick von Platen's avatar
Patrick von Platen committed
778
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
779

Patrick von Platen's avatar
Patrick von Platen committed
780
781
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
782

Patrick von Platen's avatar
Patrick von Platen committed
783
784
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
785
786

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
787
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
788
            )
Patrick von Platen's avatar
Patrick von Platen committed
789
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
790

Patrick von Platen's avatar
Patrick von Platen committed
791
792
793
794
795
796
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
797

Patrick von Platen's avatar
Patrick von Platen committed
798
            pipe.set_adapters("adapter-1")
799

Patrick von Platen's avatar
Patrick von Platen committed
800
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
801

Patrick von Platen's avatar
Patrick von Platen committed
802
803
            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
804

Patrick von Platen's avatar
Patrick von Platen committed
805
            pipe.set_adapters(["adapter-1", "adapter-2"])
806

Patrick von Platen's avatar
Patrick von Platen committed
807
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
808

Patrick von Platen's avatar
Patrick von Platen committed
809
810
811
812
813
            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )
814

Patrick von Platen's avatar
Patrick von Platen committed
815
816
817
818
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )
819

Patrick von Platen's avatar
Patrick von Platen committed
820
821
822
823
            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )
824

Patrick von Platen's avatar
Patrick von Platen committed
825
            pipe.disable_lora()
826

Patrick von Platen's avatar
Patrick von Platen committed
827
828
829
830
831
832
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )
833

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
    def test_simple_inference_with_text_unet_multi_adapter_delete_adapter(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")

            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
            )
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")

            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.set_adapters("adapter-1")

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

924
925
926
927
928
    def test_simple_inference_with_text_unet_multi_adapter_weighted(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Patrick von Platen's avatar
Patrick von Platen committed
929
930
931
932
933
934
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
935

Patrick von Platen's avatar
Patrick von Platen committed
936
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
937

Patrick von Platen's avatar
Patrick von Platen committed
938
939
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
940

Patrick von Platen's avatar
Patrick von Platen committed
941
942
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
943
944

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
945
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
946
            )
Patrick von Platen's avatar
Patrick von Platen committed
947
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
948

Patrick von Platen's avatar
Patrick von Platen committed
949
950
951
952
953
954
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
955

Patrick von Platen's avatar
Patrick von Platen committed
956
            pipe.set_adapters("adapter-1")
957

Patrick von Platen's avatar
Patrick von Platen committed
958
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images
959

Patrick von Platen's avatar
Patrick von Platen committed
960
961
            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images
962

Patrick von Platen's avatar
Patrick von Platen committed
963
            pipe.set_adapters(["adapter-1", "adapter-2"])
964

Patrick von Platen's avatar
Patrick von Platen committed
965
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images
966

Patrick von Platen's avatar
Patrick von Platen committed
967
968
969
970
971
            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )
972

Patrick von Platen's avatar
Patrick von Platen committed
973
974
975
976
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )
977

Patrick von Platen's avatar
Patrick von Platen committed
978
979
980
981
            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )
982

Patrick von Platen's avatar
Patrick von Platen committed
983
984
            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images
985

Patrick von Platen's avatar
Patrick von Platen committed
986
987
988
989
            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )
990

Patrick von Platen's avatar
Patrick von Platen committed
991
            pipe.disable_lora()
992

Patrick von Platen's avatar
Patrick von Platen committed
993
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images
994

Patrick von Platen's avatar
Patrick von Platen committed
995
996
997
998
            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )
999

Patrick von Platen's avatar
Patrick von Platen committed
1000
1001
1002
1003
1004
1005
1006
    def test_lora_fuse_nan(self):
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1007

Patrick von Platen's avatar
Patrick von Platen committed
1008
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1009

Patrick von Platen's avatar
Patrick von Platen committed
1010
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1011

Patrick von Platen's avatar
Patrick von Platen committed
1012
1013
            self.assertTrue(
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
1014
            )
Patrick von Platen's avatar
Patrick von Platen committed
1015
1016
1017
1018
1019
1020
1021
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
                pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float(
                    "inf"
                )
1022

Patrick von Platen's avatar
Patrick von Platen committed
1023
1024
1025
            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
                pipe.fuse_lora(safe_fusing=True)
1026

Patrick von Platen's avatar
Patrick von Platen committed
1027
1028
            # without we should not see an error, but every image will be black
            pipe.fuse_lora(safe_fusing=False)
1029

Patrick von Platen's avatar
Patrick von Platen committed
1030
            out = pipe("test", num_inference_steps=2, output_type="np").images
1031

Patrick von Platen's avatar
Patrick von Platen committed
1032
            self.assertTrue(np.isnan(out).all())
1033
1034
1035
1036
1037
1038

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Patrick von Platen's avatar
Patrick von Platen committed
1039
1040
1041
1042
1043
1044
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1045

Patrick von Platen's avatar
Patrick von Platen committed
1046
1047
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1048

Patrick von Platen's avatar
Patrick von Platen committed
1049
1050
            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])
1051

Patrick von Platen's avatar
Patrick von Platen committed
1052
1053
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
1054

Patrick von Platen's avatar
Patrick von Platen committed
1055
1056
            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])
1057

Patrick von Platen's avatar
Patrick von Platen committed
1058
1059
            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])
1060
1061
1062
1063
1064
1065

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Patrick von Platen's avatar
Patrick von Platen committed
1066
1067
1068
1069
1070
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
1071

Patrick von Platen's avatar
Patrick von Platen committed
1072
1073
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.unet.add_adapter(unet_lora_config, "adapter-1")
1074

Patrick von Platen's avatar
Patrick von Platen committed
1075
1076
            adapter_names = pipe.get_list_adapters()
            self.assertDictEqual(adapter_names, {"text_encoder": ["adapter-1"], "unet": ["adapter-1"]})
1077

Patrick von Platen's avatar
Patrick von Platen committed
1078
1079
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
            pipe.unet.add_adapter(unet_lora_config, "adapter-2")
1080

Patrick von Platen's avatar
Patrick von Platen committed
1081
1082
1083
1084
            adapter_names = pipe.get_list_adapters()
            self.assertDictEqual(
                adapter_names, {"text_encoder": ["adapter-1", "adapter-2"], "unet": ["adapter-1", "adapter-2"]}
            )
1085

Patrick von Platen's avatar
Patrick von Platen committed
1086
1087
1088
1089
1090
            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertDictEqual(
                pipe.get_list_adapters(),
                {"unet": ["adapter-1", "adapter-2"], "text_encoder": ["adapter-1", "adapter-2"]},
            )
1091

Patrick von Platen's avatar
Patrick von Platen committed
1092
1093
1094
1095
1096
            pipe.unet.add_adapter(unet_lora_config, "adapter-3")
            self.assertDictEqual(
                pipe.get_list_adapters(),
                {"unet": ["adapter-1", "adapter-2", "adapter-3"], "text_encoder": ["adapter-1", "adapter-2"]},
            )
1097
1098
1099
1100
1101
1102
1103

    @unittest.skip("This is failing for now - need to investigate")
    def test_simple_inference_with_text_unet_lora_unfused_torch_compile(self):
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Patrick von Platen's avatar
Patrick von Platen committed
1104
1105
1106
1107
1108
1109
        for scheduler_cls in [DDIMScheduler, LCMScheduler]:
            components, _, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(self.torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)
1110

Patrick von Platen's avatar
Patrick von Platen committed
1111
1112
            pipe.text_encoder.add_adapter(text_lora_config)
            pipe.unet.add_adapter(unet_lora_config)
1113
1114

            self.assertTrue(
Patrick von Platen's avatar
Patrick von Platen committed
1115
                self.check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
1116
            )
Patrick von Platen's avatar
Patrick von Platen committed
1117
            self.assertTrue(self.check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
1118

Patrick von Platen's avatar
Patrick von Platen committed
1119
1120
1121
1122
1123
            if self.has_two_text_encoders:
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    self.check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
1124

Patrick von Platen's avatar
Patrick von Platen committed
1125
1126
1127
1128
1129
            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

            if self.has_two_text_encoders:
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)
1130

Patrick von Platen's avatar
Patrick von Platen committed
1131
1132
            # Just makes sure it works..
            _ = pipe(**inputs, generator=torch.manual_seed(0)).images
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338


class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
    pipeline_class = StableDiffusionPipeline
    scheduler_cls = DDIMScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "clip_sample": False,
        "set_alpha_to_one": False,
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "cross_attention_dim": 32,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
    }

    @slow
    @require_torch_gpu
    def test_integration_move_lora_cpu(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_id, adapter_name="adapter-1")
        pipe.load_lora_weights(lora_id, adapter_name="adapter-2")
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder",
        )

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.unet),
            "Lora not correctly set in text encoder",
        )

        # We will offload the first adapter in CPU and check if the offloading
        # has been performed correctly
        pipe.set_lora_device(["adapter-1"], "cpu")

        for name, module in pipe.unet.named_modules():
            if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device == torch.device("cpu"))
            elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device != torch.device("cpu"))

        for name, module in pipe.text_encoder.named_modules():
            if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device == torch.device("cpu"))
            elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
                self.assertTrue(module.weight.device != torch.device("cpu"))

        pipe.set_lora_device(["adapter-1"], 0)

        for n, m in pipe.unet.named_modules():
            if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        for n, m in pipe.text_encoder.named_modules():
            if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        pipe.set_lora_device(["adapter-1", "adapter-2"], "cuda")

        for n, m in pipe.unet.named_modules():
            if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

        for n, m in pipe.text_encoder.named_modules():
            if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
                self.assertTrue(m.weight.device != torch.device("cpu"))

    @slow
    @require_torch_gpu
    def test_integration_logits_with_scale(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
        pipe.load_lora_weights(lora_id)
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder 2",
        )

        prompt = "a red sks dog"

        images = pipe(
            prompt=prompt,
            num_inference_steps=15,
            cross_attention_kwargs={"scale": 0.5},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images

        expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321])

        predicted_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

    @slow
    @require_torch_gpu
    def test_integration_logits_no_scale(self):
        path = "runwayml/stable-diffusion-v1-5"
        lora_id = "takuma104/lora-test-text-encoder-lora-target"

        pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
        pipe.load_lora_weights(lora_id)
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.text_encoder),
            "Lora not correctly set in text encoder",
        )

        prompt = "a red sks dog"

        images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images

        expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084])

        predicted_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

    @nightly
    @require_torch_gpu
    def test_integration_logits_multi_adapter(self):
        path = "stabilityai/stable-diffusion-xl-base-1.0"
        lora_id = "CiroN2022/toy-face"

        pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16)
        pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
        pipe = pipe.to("cuda")

        self.assertTrue(
            self.check_if_lora_correctly_set(pipe.unet),
            "Lora not correctly set in Unet",
        )

        prompt = "toy_face of a hacker with a hoodie"

        lora_scale = 0.9

        images = pipe(
            prompt=prompt,
            num_inference_steps=30,
            generator=torch.manual_seed(0),
            cross_attention_kwargs={"scale": lora_scale},
            output_type="np",
        ).images
        expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539])

        predicted_slice = images[0, -3:, -3:, -1].flatten()
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
        pipe.set_adapters("pixel")

        prompt = "pixel art, a hacker with a hoodie, simple, flat colors"
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": lora_scale},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images

        predicted_slice = images[0, -3:, -3:, -1].flatten()
        expected_slice_scale = np.array(
            [0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889]
        )
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        # multi-adapter inference
        pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": 1.0},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images
        predicted_slice = images[0, -3:, -3:, -1].flatten()
1339
        expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909])
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))

        # Lora disabled
        pipe.disable_lora()
        images = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5,
            cross_attention_kwargs={"scale": lora_scale},
            generator=torch.manual_seed(0),
            output_type="np",
        ).images
        predicted_slice = images[0, -3:, -3:, -1].flatten()
1353
        expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487])
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
        self.assertTrue(np.allclose(expected_slice_scale, predicted_slice, atol=1e-3, rtol=1e-3))


class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
    has_two_text_encoders = True
    pipeline_class = StableDiffusionXLPipeline
    scheduler_cls = EulerDiscreteScheduler
    scheduler_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "timestep_spacing": "leading",
        "steps_offset": 1,
    }
    unet_kwargs = {
        "block_out_channels": (32, 64),
        "layers_per_block": 2,
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
        "sample_size": 32,
        "in_channels": 4,
        "out_channels": 4,
        "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
        "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
        "attention_head_dim": (2, 4),
        "use_linear_projection": True,
        "addition_embed_type": "text_time",
        "addition_time_embed_dim": 8,
        "transformer_layers_per_block": (1, 2),
        "projection_class_embeddings_input_dim": 80,  # 6 * 8 + 32
        "cross_attention_dim": 64,
    }
    vae_kwargs = {
        "block_out_channels": [32, 64],
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
        "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
        "latent_channels": 4,
        "sample_size": 128,
    }
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733


@slow
@require_torch_gpu
class LoraIntegrationTests(unittest.TestCase):
    def tearDown(self):
        import gc

        gc.collect()
        torch.cuda.empty_cache()
        gc.collect()

    def test_dreambooth_old_format(self):
        generator = torch.Generator("cpu").manual_seed(0)

        lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe(
            "A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_dreambooth_text_encoder_new_format(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/lora-trained"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_a1111(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_lycoris(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained(
            "hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16"
        ).to(torch_device)
        lora_model_id = "hf-internal-testing/edgLycorisMugler-light"
        lora_filename = "edgLycorisMugler-light.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_a1111_with_model_cpu_offload(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_a1111_with_sequential_cpu_offload(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
        pipe.enable_sequential_cpu_offload()
        lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
        lora_filename = "light_and_shadow.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_kohya_sd_v15_with_higher_dimensions(self):
        generator = torch.Generator().manual_seed(0)

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        lora_model_id = "hf-internal-testing/urushisato-lora"
        lora_filename = "urushisato_v15.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_vanilla_funetuning(self):
        generator = torch.Generator().manual_seed(0)

        lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
        card = RepoCard.load(lora_model_id)
        base_model_id = card.data.to_dict()["base_model"]

        pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
        pipe = pipe.to(torch_device)
        pipe.load_lora_weights(lora_model_id)

        images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()

        expected = np.array([0.7406, 0.699, 0.5963, 0.7493, 0.7045, 0.6096, 0.6886, 0.6388, 0.583])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_unload_kohya_lora(self):
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
        release_memory(pipe)

    def test_load_unload_load_kohya_lora(self):
        # This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded
        # without introducing any side-effects. Even though the test uses a Kohya-style
        # LoRA, the underlying adapter handling mechanism is format-agnostic.
        generator = torch.manual_seed(0)
        prompt = "masterpiece, best quality, mountain"
        num_inference_steps = 2

        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None).to(
            torch_device
        )
        initial_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        initial_images = initial_images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
        lora_filename = "Colored_Icons_by_vizsumit.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images = lora_images[0, -3:, -3:, -1].flatten()

        pipe.unload_lora_weights()
        generator = torch.manual_seed(0)
        unloaded_lora_images = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()

        self.assertFalse(np.allclose(initial_images, lora_images))
        self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))

        # make sure we can load a LoRA again after unloading and they don't have
        # any undesired effects.
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        generator = torch.manual_seed(0)
        lora_images_again = pipe(
            prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
        ).images
        lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3))
        release_memory(pipe)


@slow
@require_torch_gpu
class LoraSDXLIntegrationTests(unittest.TestCase):
    def tearDown(self):
        import gc

        gc.collect()
        torch.cuda.empty_cache()
        gc.collect()

    def test_sdxl_0_9_lora_one(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora"
        lora_filename = "daiton-xl-lora-test.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_0_9_lora_two(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora"
        lora_filename = "saijo.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_0_9_lora_three(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9")
        lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora"
        lora_filename = "kame_sdxl_v2-000020-16rank.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468])

        self.assertTrue(np.allclose(images, expected, atol=5e-3))
        release_memory(pipe)

    def test_sdxl_1_0_lora(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

Patrick von Platen's avatar
Patrick von Platen committed
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
    def test_sdxl_lcm_lora(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_model_cpu_offload()

        generator = torch.Generator().manual_seed(0)

        lora_model_id = "latent-consistency/lcm-lora-sdxl"

        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

        self.assertTrue(np.allclose(image_np, expected_image_np, atol=1e-2))

        pipe.unload_lora_weights()

        release_memory(pipe)

    def test_sdv1_5_lcm_lora(self):
        pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

        generator = torch.Generator().manual_seed(0)

        lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

        self.assertTrue(np.allclose(image_np, expected_image_np, atol=1e-2))

        pipe.unload_lora_weights()

        release_memory(pipe)

    def test_sdv1_5_lcm_lora_img2img(self):
        pipe = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.png"
        )

        generator = torch.Generator().manual_seed(0)

        lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
        pipe.load_lora_weights(lora_model_id)

        image = pipe(
            "snowy mountain",
            generator=generator,
            image=init_image,
            strength=0.5,
            num_inference_steps=4,
            guidance_scale=0.5,
        ).images[0]

        expected_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora_img2img.png"
        )

        image_np = pipe.image_processor.pil_to_numpy(image)
        expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)

        self.assertTrue(np.allclose(image_np, expected_image_np, atol=1e-2))

        pipe.unload_lora_weights()

        release_memory(pipe)

1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
    def test_sdxl_1_0_lora_fusion(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        pipe.fuse_lora()
        # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
        # silently deleted - otherwise this will CPU OOM
        pipe.unload_lora_weights()

        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        # This way we also test equivalence between LoRA fusion and the non-fusion behaviour.
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-4))
        release_memory(pipe)

    def test_sdxl_1_0_lora_unfusion(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()

        pipe.enable_model_cpu_offload()

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        images_with_fusion = images[0, -3:, -3:, -1].flatten()

        pipe.unfuse_lora()
        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        images_without_fusion = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(images_with_fusion, images_without_fusion, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_1_0_lora_unfusion_effectivity(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        original_image_slice = images[0, -3:, -3:, -1].flatten()

        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        _ = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        pipe.unfuse_lora()

        # We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights
        pipe.unload_lora_weights()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        images_without_fusion_slice = images[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(original_image_slice, images_without_fusion_slice, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_1_0_lora_fusion_efficiency(self):
        generator = torch.Generator().manual_seed(0)
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"

        pipe = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
        )
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.bfloat16)
        pipe.enable_model_cpu_offload()

        start_time = time.time()
        for _ in range(3):
            pipe(
                "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
            ).images
        end_time = time.time()
        elapsed_time_non_fusion = end_time - start_time

        del pipe

        pipe = DiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16
        )
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.bfloat16)
        pipe.fuse_lora()
        # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
        # silently deleted - otherwise this will CPU OOM
        pipe.unload_lora_weights()

        pipe.enable_model_cpu_offload()

        start_time = time.time()
        generator = torch.Generator().manual_seed(0)
        for _ in range(3):
            pipe(
                "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
            ).images
        end_time = time.time()
        elapsed_time_fusion = end_time - start_time

        self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion)
        release_memory(pipe)

    def test_sdxl_1_0_last_ben(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_model_cpu_offload()
        lora_model_id = "TheLastBen/Papercut_SDXL"
        lora_filename = "papercut.safetensors"
        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

    def test_sdxl_1_0_fuse_unfuse_all(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
        text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
        text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
        unet_sd = copy.deepcopy(pipe.unet.state_dict())

        pipe.load_lora_weights(
            "davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16
        )

        fused_te_state_dict = pipe.text_encoder.state_dict()
        fused_te_2_state_dict = pipe.text_encoder_2.state_dict()
        unet_state_dict = pipe.unet.state_dict()

        for key, value in text_encoder_1_sd.items():
            self.assertTrue(torch.allclose(fused_te_state_dict[key], value))

        for key, value in text_encoder_2_sd.items():
            self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value))

        for key, value in unet_state_dict.items():
            self.assertTrue(torch.allclose(unet_state_dict[key], value))

        pipe.fuse_lora()
        pipe.unload_lora_weights()

        assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict())
        assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict())
        assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict())
        release_memory(pipe)
        del unet_sd, text_encoder_1_sd, text_encoder_2_sd

    def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self):
        generator = torch.Generator().manual_seed(0)

        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
        pipe.enable_sequential_cpu_offload()
        lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
        lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"

        pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)

        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images

        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipe)

2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
    def test_sd_load_civitai_empty_network_alpha(self):
        """
        This test simply checks that loading a LoRA with an empty network alpha works fine
        See: https://github.com/huggingface/diffusers/issues/5606
        """
        pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to("cuda")
        pipeline.enable_sequential_cpu_offload()
        civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors")
        pipeline.load_lora_weights(civitai_path, adapter_name="ahri")

        images = pipeline(
            "ahri, masterpiece, league of legends",
            output_type="np",
            generator=torch.manual_seed(156),
            num_inference_steps=5,
        ).images
        images = images[0, -3:, -3:, -1].flatten()
        expected = np.array([0.0, 0.0, 0.0, 0.002557, 0.020954, 0.001792, 0.006581, 0.00591, 0.002995])

        self.assertTrue(np.allclose(images, expected, atol=1e-3))
        release_memory(pipeline)

2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
    def test_canny_lora(self):
        controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")

        pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
            "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
        )
        pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
        pipe.enable_sequential_cpu_offload()

        generator = torch.Generator(device="cpu").manual_seed(0)
        prompt = "corgi"
        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
        )

        images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images

        assert images[0].shape == (768, 512, 3)

        original_image = images[0, -3:, -3:, -1].flatten()
        expected_image = np.array([0.4574, 0.4461, 0.4435, 0.4462, 0.4396, 0.439, 0.4474, 0.4486, 0.4333])
        assert np.allclose(original_image, expected_image, atol=1e-04)
        release_memory(pipe)

    @nightly
    def test_sequential_fuse_unfuse(self):
        pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)

        # 1. round
        pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
        pipe.to("cuda")
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        images = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        image_slice = images[0, -3:, -3:, -1].flatten()

        pipe.unfuse_lora()

        # 2. round
        pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16)
        pipe.fuse_lora()
        pipe.unfuse_lora()

        # 3. round
        pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16)
        pipe.fuse_lora()
        pipe.unfuse_lora()

        # 4. back to 1st round
        pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
        pipe.fuse_lora()

        generator = torch.Generator().manual_seed(0)
        images_2 = pipe(
            "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
        ).images
        image_slice_2 = images_2[0, -3:, -3:, -1].flatten()

        self.assertTrue(np.allclose(image_slice, image_slice_2, atol=1e-3))
        release_memory(pipe)