train_dreambooth.py 43.1 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

16
import argparse
17
import hashlib
18
import itertools
Suraj Patil's avatar
Suraj Patil committed
19
import logging
20
21
import math
import os
22
import warnings
23
24
from pathlib import Path

25
import accelerate
26
import numpy as np
27
28
29
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
30
import transformers
31
32
from accelerate import Accelerator
from accelerate.logging import get_logger
33
from accelerate.utils import ProjectConfiguration, set_seed
34
from huggingface_hub import create_repo, upload_folder
35
from packaging import version
36
from PIL import Image
37
from torch.utils.data import Dataset
38
39
from torchvision import transforms
from tqdm.auto import tqdm
40
from transformers import AutoTokenizer, PretrainedConfig
41

42
import diffusers
43
44
45
46
47
48
49
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    UNet2DConditionModel,
)
50
from diffusers.optimization import get_scheduler
51
from diffusers.utils import check_min_version, is_wandb_available
52
53
from diffusers.utils.import_utils import is_xformers_available

54

55
56
57
if is_wandb_available():
    import wandb

58
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
59
check_min_version("0.17.0.dev0")
60

61
62
63
logger = get_logger(__name__)


64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def save_model_card(repo_id: str, images=None, base_model=str, train_text_encoder=False, prompt=str, repo_folder=None):
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
instance_prompt: {prompt}
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
    """
    model_card = f"""
# DreamBooth - {repo_id}

This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following. \n
{img_str}

DreamBooth for the text encoder was enabled: {train_text_encoder}.
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
def log_validation(text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch):
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        text_encoder=accelerator.unwrap_model(text_encoder),
        tokenizer=tokenizer,
        unet=accelerator.unwrap_model(unet),
        vae=vae,
        revision=args.revision,
        torch_dtype=weight_dtype,
    )
    pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
    for _ in range(args.num_validation_images):
        with torch.autocast("cuda"):
            image = pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
        images.append(image)

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
            tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()

140
141
    return images

142

143
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
144
145
146
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
147
        revision=revision,
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")


Suraj Patil's avatar
Suraj Patil committed
163
def parse_args(input_args=None):
164
165
166
167
168
169
170
171
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
172
173
174
175
176
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
177
178
179
180
        help=(
            "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
            " float32 precision."
        ),
181
    )
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
206
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
207
        help="The prompt with identifier specifying the instance",
208
209
210
211
212
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
213
        help="The prompt to specify images in the same class as provided instance images.",
214
215
216
217
218
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
219
        help="Flag to add prior preservation loss.",
220
221
222
223
224
225
226
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
227
228
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
248
249
250
        "--center_crop",
        default=False,
        action="store_true",
patil-suraj's avatar
patil-suraj committed
251
252
253
254
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
255
    )
256
257
258
259
260
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
261
262
263
264
265
266
267
268
269
270
271
272
273
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
274
275
276
277
278
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
279
280
281
282
283
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
284
285
        ),
    )
286
    parser.add_argument(
287
        "--checkpoints_total_limit",
288
289
290
291
292
293
294
295
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more details"
        ),
    )
296
297
298
299
300
301
302
303
304
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
340
341
342
343
344
345
346
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
347
348
349
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
350
351
352
353
354
355
356
357
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
380
381
382
383
384
385
386
387
388
389
390
391
392
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
393
394
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
395
396
        ),
    )
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
419
420
421
    parser.add_argument(
        "--mixed_precision",
        type=str,
422
        default=None,
423
424
        choices=["no", "fp16", "bf16"],
        help=(
425
426
427
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
428
429
        ),
    )
430
431
432
433
434
435
436
437
438
439
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
440
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
441
442
443
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
444
445
446
447
448
449
450
451
452
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
453

454
455
456
457
458
459
460
461
462
463
    parser.add_argument(
        "--offset_noise",
        action="store_true",
        default=False,
        help=(
            "Fine-tuning against a modified noise"
            " See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information."
        ),
    )

464
465
466
467
468
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

469
470
471
472
473
474
475
476
477
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
478
    else:
479
        # logger is not available yet
480
        if args.class_data_dir is not None:
481
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
482
        if args.class_prompt is not None:
483
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
484
485
486
487
488
489

    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
490
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
491
492
493
494
495
496
497
498
499
500
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
501
        class_num=None,
502
503
504
505
506
507
508
509
510
        size=512,
        center_crop=False,
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
511
            raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
512
513
514
515
516
517
518
519
520

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
521
            self.class_images_path = list(self.class_data_root.iterdir())
522
523
524
525
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
        example["instance_prompt_ids"] = self.tokenizer(
            self.instance_prompt,
            truncation=True,
552
            padding="max_length",
553
            max_length=self.tokenizer.model_max_length,
554
            return_tensors="pt",
555
556
557
558
559
560
561
562
563
564
        ).input_ids

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
            example["class_prompt_ids"] = self.tokenizer(
                self.class_prompt,
                truncation=True,
565
                padding="max_length",
566
                max_length=self.tokenizer.model_max_length,
567
                return_tensors="pt",
568
569
570
571
572
            ).input_ids

        return example


573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
def collate_fn(examples, with_prior_preservation=False):
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
    return batch


595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


612
def main(args):
613
614
    logging_dir = Path(args.output_dir, args.logging_dir)

615
    accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)
616

617
618
619
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
620
        log_with=args.report_to,
621
        logging_dir=logging_dir,
622
        project_config=accelerator_project_config,
623
624
    )

625
626
627
628
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

629
630
631
632
633
634
635
636
637
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
653
654
655
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
656
    # Generate class images if prior preservation is enabled.
657
658
659
660
661
662
663
664
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
665
666
667
668
669
670
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
671
            pipeline = DiffusionPipeline.from_pretrained(
672
673
674
675
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
691
                images = pipeline(example["prompt"]).images
692
693

                for i, image in enumerate(images):
694
695
696
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
697
698
699
700
701
702
703

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
704
        if args.output_dir is not None:
705
706
            os.makedirs(args.output_dir, exist_ok=True)

707
708
709
710
711
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

712
713
    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
714
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
715
    elif args.pretrained_model_name_or_path:
716
        tokenizer = AutoTokenizer.from_pretrained(
717
718
719
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
720
            use_fast=False,
721
        )
722

723
    # import correct text encoder class
724
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
725

Suraj Patil's avatar
Suraj Patil committed
726
727
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
728
    text_encoder = text_encoder_cls.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
729
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
730
    )
Suraj Patil's avatar
Suraj Patil committed
731
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
732
    unet = UNet2DConditionModel.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
733
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
734
    )
735

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
    # `accelerate` 0.16.0 will have better support for customized saving
    if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
        # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
        def save_model_hook(models, weights, output_dir):
            for model in models:
                sub_dir = "unet" if type(model) == type(unet) else "text_encoder"
                model.save_pretrained(os.path.join(output_dir, sub_dir))

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

        def load_model_hook(models, input_dir):
            while len(models) > 0:
                # pop models so that they are not loaded again
                model = models.pop()

                if type(model) == type(text_encoder):
                    # load transformers style into model
                    load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder")
                    model.config = load_model.config
                else:
                    # load diffusers style into model
                    load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                    model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
                del load_model

        accelerator.register_save_state_pre_hook(save_model_hook)
        accelerator.register_load_state_pre_hook(load_model_hook)

Suraj Patil's avatar
Suraj Patil committed
767
768
769
770
    vae.requires_grad_(False)
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

771
772
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
773
774
775
776
777
778
779
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
780
            unet.enable_xformers_memory_efficient_attention()
781
782
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
783

784
785
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
786
787
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
788

789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
    # Check that all trainable models are in full precision
    low_precision_error_string = (
        "Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training. copy of the weights should still be float32."
    )

    if accelerator.unwrap_model(unet).dtype != torch.float32:
        raise ValueError(
            f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
        )

    if args.train_text_encoder and accelerator.unwrap_model(text_encoder).dtype != torch.float32:
        raise ValueError(
            f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}."
            f" {low_precision_error_string}"
        )

Suraj Patil's avatar
Suraj Patil committed
806
807
808
809
810
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
829
    # Optimizer creation
830
831
832
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
833
    optimizer = optimizer_class(
834
        params_to_optimize,
835
836
837
838
839
840
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Suraj Patil's avatar
Suraj Patil committed
841
    # Dataset and DataLoaders creation:
842
843
844
845
846
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
847
        class_num=args.num_class_images,
848
849
850
851
852
853
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
    )

    train_dataloader = torch.utils.data.DataLoader(
854
855
856
857
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
858
        num_workers=args.dataloader_num_workers,
859
860
861
862
863
864
865
866
867
868
869
870
871
872
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
873
874
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
875
876
    )

Suraj Patil's avatar
Suraj Patil committed
877
    # Prepare everything with our `accelerator`.
878
879
880
881
882
883
884
885
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
886

Suraj Patil's avatar
Suraj Patil committed
887
888
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
889
    weight_dtype = torch.float32
890
    if accelerator.mixed_precision == "fp16":
891
        weight_dtype = torch.float16
892
    elif accelerator.mixed_precision == "bf16":
893
894
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
895
    # Move vae and text_encoder to device and cast to weight_dtype
896
    vae.to(accelerator.device, dtype=weight_dtype)
897
898
    if not args.train_text_encoder:
        text_encoder.to(accelerator.device, dtype=weight_dtype)
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
923
924
925
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
926
    # Potentially load in the weights and states from a previous save
927
928
929
930
931
932
933
934
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
950

951
    # Only show the progress bar once on each machine.
952
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
953
954
    progress_bar.set_description("Steps")

955
    for epoch in range(first_epoch, args.num_train_epochs):
956
        unet.train()
957
958
        if args.train_text_encoder:
            text_encoder.train()
959
        for step, batch in enumerate(train_dataloader):
960
961
962
963
964
965
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

966
967
            with accelerator.accumulate(unet):
                # Convert images to latent space
968
                latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
969
                latents = latents * vae.config.scaling_factor
970
971

                # Sample noise that we'll add to the latents
972
973
974
975
976
977
                if args.offset_noise:
                    noise = torch.randn_like(latents) + 0.1 * torch.randn(
                        latents.shape[0], latents.shape[1], 1, 1, device=latents.device
                    )
                else:
                    noise = torch.randn_like(latents)
978
979
980
981
982
983
984
985
986
987
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
988
                encoder_hidden_states = text_encoder(batch["input_ids"])[0]
989
990

                # Predict the noise residual
991
992
993
994
995
996
997
998
999
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
1000
1001

                if args.with_prior_preservation:
1002
1003
1004
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
1005
1006

                    # Compute instance loss
1007
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1008
1009

                    # Compute prior loss
1010
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
1011
1012
1013
1014

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
1015
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1016
1017

                accelerator.backward(loss)
1018
                if accelerator.sync_gradients:
1019
1020
1021
1022
1023
1024
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
1025
1026
                optimizer.step()
                lr_scheduler.step()
1027
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)
1028
1029
1030
1031
1032
1033

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1034
                if accelerator.is_main_process:
1035
                    images = []
1036
                    if global_step % args.checkpointing_steps == 0:
1037
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1038
1039
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
1040
1041

                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
1042
1043
1044
                        images = log_validation(
                            text_encoder, tokenizer, unet, vae, args, accelerator, weight_dtype, epoch
                        )
1045

1046
1047
1048
1049
1050
1051
1052
1053
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
1054
    accelerator.wait_for_everyone()
1055
    if accelerator.is_main_process:
1056
        pipeline = DiffusionPipeline.from_pretrained(
1057
1058
1059
            args.pretrained_model_name_or_path,
            unet=accelerator.unwrap_model(unet),
            text_encoder=accelerator.unwrap_model(text_encoder),
1060
            revision=args.revision,
1061
1062
1063
1064
        )
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
1065
1066
1067
1068
1069
1070
1071
1072
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
            )
1073
1074
1075
1076
1077
1078
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1079
1080
1081
1082
1083

    accelerator.end_training()


if __name__ == "__main__":
1084
1085
    args = parse_args()
    main(args)