train_dreambooth.py 33.1 KB
Newer Older
1
import argparse
2
import hashlib
3
import itertools
Suraj Patil's avatar
Suraj Patil committed
4
import logging
5
6
import math
import os
7
import warnings
8
9
10
11
12
13
14
15
from pathlib import Path
from typing import Optional

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset

Suraj Patil's avatar
Suraj Patil committed
16
17
18
import datasets
import diffusers
import transformers
19
20
21
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
22
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
23
from diffusers.optimization import get_scheduler
24
from diffusers.utils import check_min_version
25
from diffusers.utils.import_utils import is_xformers_available
26
27
28
29
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
30
from transformers import AutoTokenizer, PretrainedConfig
31
32


33
34
35
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")

36
37
38
logger = get_logger(__name__)


39
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
40
41
42
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
43
        revision=revision,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
    else:
        raise ValueError(f"{model_class} is not supported.")


Suraj Patil's avatar
Suraj Patil committed
59
def parse_args(input_args=None):
60
61
62
63
64
65
66
67
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
68
69
70
71
72
73
74
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
99
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
100
        help="The prompt with identifier specifying the instance",
101
102
103
104
105
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
106
        help="The prompt to specify images in the same class as provided instance images.",
107
108
109
110
111
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
112
        help="Flag to add prior preservation loss.",
113
114
115
116
117
118
119
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
120
121
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
    )
143
    parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
144
145
146
147
148
149
150
151
152
153
154
155
156
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
157
158
159
160
161
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
162
163
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
164
165
166
167
168
169
170
171
172
173
174
175
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
211
212
213
214
215
216
217
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
            ' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
            "Only applicable when `--with_tracking` is passed."
        ),
    )
261
262
263
    parser.add_argument(
        "--mixed_precision",
        type=str,
264
        default=None,
265
266
        choices=["no", "fp16", "bf16"],
        help=(
267
268
269
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
270
271
        ),
    )
272
273
274
275
276
277
278
279
280
281
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
282
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
283
284
285
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
286

287
288
289
290
291
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

292
293
294
295
296
297
298
299
300
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
301
    else:
302
        # logger is not available yet
303
        if args.class_data_dir is not None:
304
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
305
        if args.class_prompt is not None:
306
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
307
308
309
310
311
312

    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
313
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
        size=512,
        center_crop=False,
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
            raise ValueError("Instance images root doesn't exists.")

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
343
            self.class_images_path = list(self.class_data_root.iterdir())
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
            self.num_class_images = len(self.class_images_path)
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
        example["instance_prompt_ids"] = self.tokenizer(
            self.instance_prompt,
            truncation=True,
371
            padding="max_length",
372
            max_length=self.tokenizer.model_max_length,
373
            return_tensors="pt",
374
375
376
377
378
379
380
381
382
383
        ).input_ids

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
            example["class_prompt_ids"] = self.tokenizer(
                self.class_prompt,
                truncation=True,
384
                padding="max_length",
385
                max_length=self.tokenizer.model_max_length,
386
                return_tensors="pt",
387
388
389
390
391
            ).input_ids

        return example


392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
def collate_fn(examples, with_prior_preservation=False):
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
    return batch


414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


441
def main(args):
442
443
444
445
446
    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
447
        log_with=args.report_to,
448
449
450
        logging_dir=logging_dir,
    )

451
452
453
454
455
456
457
458
459
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
477
478
479
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
480
    # Generate class images if prior preservation is enabled.
481
482
483
484
485
486
487
488
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
489
490
491
492
493
494
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
495
            pipeline = DiffusionPipeline.from_pretrained(
496
497
498
499
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
515
                images = pipeline(example["prompt"]).images
516
517

                for i, image in enumerate(images):
518
519
520
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
            repo = Repository(args.output_dir, clone_from=repo_name)

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
545
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
546
    elif args.pretrained_model_name_or_path:
547
        tokenizer = AutoTokenizer.from_pretrained(
548
549
550
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
551
            use_fast=False,
552
        )
553

554
    # import correct text encoder class
555
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
556

Suraj Patil's avatar
Suraj Patil committed
557
558
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
559
    text_encoder = text_encoder_cls.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
560
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
561
    )
Suraj Patil's avatar
Suraj Patil committed
562
    vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
563
    unet = UNet2DConditionModel.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
564
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
565
    )
566

Suraj Patil's avatar
Suraj Patil committed
567
568
569
570
    vae.requires_grad_(False)
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

571
572
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
573
            unet.enable_xformers_memory_efficient_attention()
574
575
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
576

577
578
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
579
580
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
581

Suraj Patil's avatar
Suraj Patil committed
582
583
584
585
586
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
605
    # Optimizer creation
606
607
608
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
609
    optimizer = optimizer_class(
610
        params_to_optimize,
611
612
613
614
615
616
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Suraj Patil's avatar
Suraj Patil committed
617
    # Dataset and DataLoaders creation:
618
619
620
621
622
623
624
625
626
627
628
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
    )

    train_dataloader = torch.utils.data.DataLoader(
629
630
631
632
633
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
        num_workers=1,
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
648
649
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
650
651
    )

Suraj Patil's avatar
Suraj Patil committed
652
    # Prepare everything with our `accelerator`.
653
654
655
656
657
658
659
660
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
661

Suraj Patil's avatar
Suraj Patil committed
662
663
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
664
    weight_dtype = torch.float32
665
    if accelerator.mixed_precision == "fp16":
666
        weight_dtype = torch.float16
667
    elif accelerator.mixed_precision == "bf16":
668
669
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
670
    # Move vae and text_encoder to device and cast to weight_dtype
671
    vae.to(accelerator.device, dtype=weight_dtype)
672
673
    if not args.train_text_encoder:
        text_encoder.to(accelerator.device, dtype=weight_dtype)
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
698
699
700
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
701
    # Potentially load in the weights and states from a previous save
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1]
        accelerator.print(f"Resuming from checkpoint {path}")
        accelerator.load_state(os.path.join(args.output_dir, path))
        global_step = int(path.split("-")[1])

        resume_global_step = global_step * args.gradient_accumulation_steps
        first_epoch = resume_global_step // num_update_steps_per_epoch
        resume_step = resume_global_step % num_update_steps_per_epoch

719
    # Only show the progress bar once on each machine.
720
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
721
722
    progress_bar.set_description("Steps")

723
    for epoch in range(first_epoch, args.num_train_epochs):
724
        unet.train()
725
726
        if args.train_text_encoder:
            text_encoder.train()
727
        for step, batch in enumerate(train_dataloader):
728
729
730
731
732
733
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

734
735
            with accelerator.accumulate(unet):
                # Convert images to latent space
736
737
                latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                latents = latents * 0.18215
738
739

                # Sample noise that we'll add to the latents
740
                noise = torch.randn_like(latents)
741
742
743
744
745
746
747
748
749
750
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
751
                encoder_hidden_states = text_encoder(batch["input_ids"])[0]
752
753

                # Predict the noise residual
754
755
756
757
758
759
760
761
762
                model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
                    target = noise_scheduler.get_velocity(latents, noise, timesteps)
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
763
764

                if args.with_prior_preservation:
765
766
767
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
768
769

                    # Compute instance loss
770
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
771
772

                    # Compute prior loss
773
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
774
775
776
777

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
778
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
779
780

                accelerator.backward(loss)
781
                if accelerator.sync_gradients:
782
783
784
785
786
787
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
788
789
790
791
792
793
794
795
796
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

797
                if global_step % args.checkpointing_steps == 0:
798
799
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
800
801
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
802

803
804
805
806
807
808
809
810
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
811
    accelerator.wait_for_everyone()
812
    if accelerator.is_main_process:
813
        pipeline = DiffusionPipeline.from_pretrained(
814
815
816
            args.pretrained_model_name_or_path,
            unet=accelerator.unwrap_model(unet),
            text_encoder=accelerator.unwrap_model(text_encoder),
817
            revision=args.revision,
818
819
820
821
        )
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
822
            repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
823
824
825
826
827

    accelerator.end_training()


if __name__ == "__main__":
828
829
    args = parse_args()
    main(args)