train_dreambooth_lora.py 56.8 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
17
import copy
Will Berman's avatar
Will Berman committed
18
import gc
19
20
21
import logging
import math
import os
22
import shutil
23
24
25
import warnings
from pathlib import Path

26
import numpy as np
27
28
29
30
31
32
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
33
from accelerate.utils import ProjectConfiguration, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
34
from huggingface_hub import create_repo, upload_folder
35
from huggingface_hub.utils import insecure_hashlib
Patrick von Platen's avatar
Patrick von Platen committed
36
from packaging import version
37
from peft import LoraConfig
38
from peft.utils import get_peft_model_state_dict, set_peft_model_state_dict
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
44
45
46
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
47
48
49
50
51
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
52
    StableDiffusionPipeline,
53
54
    UNet2DConditionModel,
)
55
from diffusers.loaders import LoraLoaderMixin
56
from diffusers.optimization import get_scheduler
57
58
59
60
61
62
63
from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params
from diffusers.utils import (
    check_min_version,
    convert_state_dict_to_diffusers,
    convert_unet_state_dict_to_peft,
    is_wandb_available,
)
64
from diffusers.utils.import_utils import is_xformers_available
65
from diffusers.utils.torch_utils import is_compiled_module
66
67
68


# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
69
check_min_version("0.26.0.dev0")
70
71
72
73

logger = get_logger(__name__)


74
75
76
77
78
79
80
81
82
def save_model_card(
    repo_id: str,
    images=None,
    base_model=str,
    train_text_encoder=False,
    prompt=str,
    repo_folder=None,
    pipeline: DiffusionPipeline = None,
):
Patrick von Platen's avatar
Patrick von Platen committed
83
84
85
86
87
88
89
90
91
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
92
instance_prompt: {prompt}
Patrick von Platen's avatar
Patrick von Platen committed
93
tags:
94
95
- {'stable-diffusion' if isinstance(pipeline, StableDiffusionPipeline) else 'if'}
- {'stable-diffusion-diffusers' if isinstance(pipeline, StableDiffusionPipeline) else 'if-diffusers'}
Patrick von Platen's avatar
Patrick von Platen committed
96
97
- text-to-image
- diffusers
98
- lora
Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102
inference: true
---
    """
    model_card = f"""
103
# LoRA DreamBooth - {repo_id}
Patrick von Platen's avatar
Patrick von Platen committed
104

hysts's avatar
hysts committed
105
These are LoRA adaption weights for {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. \n
Patrick von Platen's avatar
Patrick von Platen committed
106
{img_str}
107
108

LoRA for the text encoder was enabled: {train_text_encoder}.
Patrick von Platen's avatar
Patrick von Platen committed
109
110
111
112
113
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
Will Berman's avatar
Will Berman committed
130
131
132
133
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
154
155
156
157
158
159
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        required=True,
        help="The prompt with identifier specifying the instance",
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=50,
        help=(
            "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="lora-dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
patil-suraj's avatar
patil-suraj committed
247
248
249
250
251
252
253
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
254
    )
255
256
257
258
259
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
283
    parser.add_argument(
284
        "--checkpoints_total_limit",
285
286
        type=int,
        default=None,
287
        help=("Max number of checkpoints to store."),
288
    )
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
340
341
342
343
344
345
346
347
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
Will Berman's avatar
Will Berman committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
433
434
435
436
437
438
439
440
441
442
443
444
445
    parser.add_argument(
        "--validation_images",
        required=False,
        default=None,
        nargs="+",
        help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
    )
    parser.add_argument(
        "--class_labels_conditioning",
        required=False,
        default=None,
        help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
    )
446
447
448
449
450
451
    parser.add_argument(
        "--rank",
        type=int,
        default=4,
        help=("The dimension of the LoRA update matrices."),
    )
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
    else:
        # logger is not available yet
        if args.class_data_dir is not None:
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
        if args.class_prompt is not None:
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")

Will Berman's avatar
Will Berman committed
474
475
476
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
493
        class_num=None,
494
495
        size=512,
        center_crop=False,
Will Berman's avatar
Will Berman committed
496
        encoder_hidden_states=None,
497
        class_prompt_encoder_hidden_states=None,
Will Berman's avatar
Will Berman committed
498
        tokenizer_max_length=None,
499
500
501
502
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
Will Berman's avatar
Will Berman committed
503
        self.encoder_hidden_states = encoder_hidden_states
504
        self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
Will Berman's avatar
Will Berman committed
505
        self.tokenizer_max_length = tokenizer_max_length
506
507
508
509
510
511
512
513
514
515
516
517
518
519

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
            raise ValueError("Instance images root doesn't exists.")

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = list(self.class_data_root.iterdir())
520
521
522
523
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
544
545
        instance_image = exif_transpose(instance_image)

546
547
548
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
Will Berman's avatar
Will Berman committed
549
550
551
552
553
554
555
556
557

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
558
559
560

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
561
562
            class_image = exif_transpose(class_image)

563
564
565
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
Will Berman's avatar
Will Berman committed
566

567
568
            if self.class_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
Will Berman's avatar
Will Berman committed
569
570
571
572
573
574
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
575
576
577
578
579

        return example


def collate_fn(examples, with_prior_preservation=False):
Will Berman's avatar
Will Berman committed
580
581
    has_attention_mask = "instance_attention_mask" in examples[0]

582
583
584
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

Will Berman's avatar
Will Berman committed
585
586
587
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

588
589
590
591
592
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]
Will Berman's avatar
Will Berman committed
593
594
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]
595
596
597
598
599
600
601
602
603
604

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
Will Berman's avatar
Will Berman committed
605
606
607
608

    if has_attention_mask:
        batch["attention_mask"] = attention_mask

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
    return batch


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


Will Berman's avatar
Will Berman committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
657
        return_dict=False,
Will Berman's avatar
Will Berman committed
658
659
660
661
662
663
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


664
665
666
def main(args):
    logging_dir = Path(args.output_dir, args.logging_dir)

667
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
668

669
670
671
672
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
673
        project_config=accelerator_project_config,
674
675
676
677
678
679
680
681
682
    )

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
683
684
685
686
687
688
689
    # TODO (sayakpaul): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Generate class images if prior preservation is enabled.
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
            pipeline = DiffusionPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
728
                variant=args.variant,
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
747
                    hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
748
749
750
751
752
753
754
755
756
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
757
        if args.output_dir is not None:
758
759
            os.makedirs(args.output_dir, exist_ok=True)

760
761
762
763
764
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
    # Load the tokenizer
    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
    elif args.pretrained_model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
            use_fast=False,
        )

    # import correct text encoder class
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)

    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder = text_encoder_cls.from_pretrained(
782
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
783
    )
784
    try:
Will Berman's avatar
Will Berman committed
785
        vae = AutoencoderKL.from_pretrained(
786
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
Will Berman's avatar
Will Berman committed
787
        )
788
789
790
    except OSError:
        # IF does not have a VAE so let's just set it to None
        # We don't have to error out here
Will Berman's avatar
Will Berman committed
791
792
        vae = None

793
    unet = UNet2DConditionModel.from_pretrained(
794
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
795
796
797
    )

    # We only train the additional adapter LoRA layers
Will Berman's avatar
Will Berman committed
798
799
    if vae is not None:
        vae.requires_grad_(False)
800
801
802
    text_encoder.requires_grad_(False)
    unet.requires_grad_(False)

803
    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
804
    # as these weights are only used for inference, keeping weights in full precision is not required.
805
806
807
808
809
810
811
812
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move unet, vae and text_encoder to device and cast to weight_dtype
    unet.to(accelerator.device, dtype=weight_dtype)
Will Berman's avatar
Will Berman committed
813
814
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)
815
816
817
818
    text_encoder.to(accelerator.device, dtype=weight_dtype)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
819
820
821
822
823
824
825
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
826
827
828
829
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

830
831
832
833
834
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()

835
    # now we will add new LoRA weights to the attention layers
836
837
    unet_lora_config = LoraConfig(
        r=args.rank,
838
        lora_alpha=args.rank,
839
840
841
842
        init_lora_weights="gaussian",
        target_modules=["to_k", "to_q", "to_v", "to_out.0", "add_k_proj", "add_v_proj"],
    )
    unet.add_adapter(unet_lora_config)
843

844
    # The text encoder comes from 🤗 transformers, we will also attach adapters to it.
845
    if args.train_text_encoder:
846
        text_lora_config = LoraConfig(
847
848
849
850
            r=args.rank,
            lora_alpha=args.rank,
            init_lora_weights="gaussian",
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
851
852
        )
        text_encoder.add_adapter(text_lora_config)
853

854
855
856
857
858
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

859
860
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
861
862
863
864
865
866
867
        if accelerator.is_main_process:
            # there are only two options here. Either are just the unet attn processor layers
            # or there are the unet and text encoder atten layers
            unet_lora_layers_to_save = None
            text_encoder_lora_layers_to_save = None

            for model in models:
868
                if isinstance(model, type(unwrap_model(unet))):
869
                    unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model))
870
                elif isinstance(model, type(unwrap_model(text_encoder))):
871
872
873
                    text_encoder_lora_layers_to_save = convert_state_dict_to_diffusers(
                        get_peft_model_state_dict(model)
                    )
874
875
876
877
878
879
880
881
882
883
884
                else:
                    raise ValueError(f"unexpected save model: {model.__class__}")

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

            LoraLoaderMixin.save_lora_weights(
                output_dir,
                unet_lora_layers=unet_lora_layers_to_save,
                text_encoder_lora_layers=text_encoder_lora_layers_to_save,
            )
885
886

    def load_model_hook(models, input_dir):
Will Berman's avatar
Will Berman committed
887
888
        unet_ = None
        text_encoder_ = None
889

Will Berman's avatar
Will Berman committed
890
891
        while len(models) > 0:
            model = models.pop()
892

893
            if isinstance(model, type(unwrap_model(unet))):
Will Berman's avatar
Will Berman committed
894
                unet_ = model
895
            elif isinstance(model, type(unwrap_model(text_encoder))):
Will Berman's avatar
Will Berman committed
896
897
898
899
                text_encoder_ = model
            else:
                raise ValueError(f"unexpected save model: {model.__class__}")

900
        lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

        unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")}
        unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict)
        incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default")

        if incompatible_keys is not None:
            # check only for unexpected keys
            unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
            if unexpected_keys:
                logger.warning(
                    f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                    f" {unexpected_keys}. "
                )

        if args.train_text_encoder:
            _set_state_dict_into_text_encoder(lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_)

        # Make sure the trainable params are in float32. This is again needed since the base models
        # are in `weight_dtype`. More details:
        # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
        if args.mixed_precision == "fp16":
            models = [unet_]
            if args.train_text_encoder:
                models.append(text_encoder_)

            # only upcast trainable parameters (LoRA) into fp32
            cast_training_params(models, dtype=torch.float32)
928
929
930
931

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

932
933
934
935
936
937
938
939
940
941
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

942
943
944
945
946
947
948
949
950
    # Make sure the trainable params are in float32.
    if args.mixed_precision == "fp16":
        models = [unet]
        if args.train_text_encoder:
            models.append(text_encoder)

        # only upcast trainable parameters (LoRA) into fp32
        cast_training_params(models, dtype=torch.float32)

951
952
953
954
955
956
957
958
959
960
961
962
963
964
    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

    # Optimizer creation
965
966
967
968
    params_to_optimize = list(filter(lambda p: p.requires_grad, unet.parameters()))
    if args.train_text_encoder:
        params_to_optimize = params_to_optimize + list(filter(lambda p: p.requires_grad, text_encoder.parameters()))

969
    optimizer = optimizer_class(
970
        params_to_optimize,
971
972
973
974
975
976
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Will Berman's avatar
Will Berman committed
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

999
        if args.class_prompt is not None:
1000
            pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt)
Will Berman's avatar
Will Berman committed
1001
        else:
1002
            pre_computed_class_prompt_encoder_hidden_states = None
Will Berman's avatar
Will Berman committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
1013
        pre_computed_class_prompt_encoder_hidden_states = None
Will Berman's avatar
Will Berman committed
1014

1015
1016
1017
1018
1019
1020
    # Dataset and DataLoaders creation:
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
1021
        class_num=args.num_class_images,
1022
1023
1024
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
Will Berman's avatar
Will Berman committed
1025
        encoder_hidden_states=pre_computed_encoder_hidden_states,
1026
        class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
Will Berman's avatar
Will Berman committed
1027
        tokenizer_max_length=args.tokenizer_max_length,
1028
1029
1030
1031
1032
1033
1034
    )

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
1035
        num_workers=args.dataloader_num_workers,
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1048
1049
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
1050
1051
1052
1053
1054
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
1055
    if args.train_text_encoder:
Will Berman's avatar
Will Berman committed
1056
1057
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
1058
1059
        )
    else:
Will Berman's avatar
Will Berman committed
1060
1061
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
1062
        )
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
1074
        tracker_config = vars(copy.deepcopy(args))
1075
1076
        tracker_config.pop("validation_images")
        accelerator.init_trackers("dreambooth-lora", config=tracker_config)
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1101
1102
1103
1104
1105
1106
1107
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
1108
            initial_global_step = 0
1109
1110
1111
1112
1113
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

1114
            initial_global_step = global_step
1115
            first_epoch = global_step // num_update_steps_per_epoch
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
1126
1127
1128

    for epoch in range(first_epoch, args.num_train_epochs):
        unet.train()
1129
1130
        if args.train_text_encoder:
            text_encoder.train()
1131
1132
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
Will Berman's avatar
Will Berman committed
1133
1134
1135
1136
1137
1138
1139
1140
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)

                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(pixel_values).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values
1141
1142

                # Sample noise that we'll add to the latents
Will Berman's avatar
Will Berman committed
1143
                noise = torch.randn_like(model_input)
1144
                bsz, channels, height, width = model_input.shape
1145
                # Sample a random timestep for each image
Will Berman's avatar
Will Berman committed
1146
1147
1148
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1149
1150
                timesteps = timesteps.long()

Will Berman's avatar
Will Berman committed
1151
                # Add noise to the model input according to the noise magnitude at each timestep
1152
                # (this is the forward diffusion process)
Will Berman's avatar
Will Berman committed
1153
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1154
1155

                # Get the text embedding for conditioning
Will Berman's avatar
Will Berman committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1165

1166
                if unwrap_model(unet).config.in_channels == channels * 2:
1167
                    noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
1168
1169
1170
1171
1172
1173

                if args.class_labels_conditioning == "timesteps":
                    class_labels = timesteps
                else:
                    class_labels = None

1174
                # Predict the noise residual
1175
                model_pred = unet(
1176
1177
1178
1179
1180
1181
                    noisy_model_input,
                    timesteps,
                    encoder_hidden_states,
                    class_labels=class_labels,
                    return_dict=False,
                )[0]
Will Berman's avatar
Will Berman committed
1182
1183
1184
1185
1186
1187

                # if model predicts variance, throw away the prediction. we will only train on the
                # simplified training objective. This means that all schedulers using the fine tuned
                # model must be configured to use one of the fixed variance variance types.
                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1188
1189
1190
1191
1192

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
Will Berman's avatar
Will Berman committed
1193
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                if args.with_prior_preservation:
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)

                    # Compute instance loss
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                accelerator.backward(loss)
                if accelerator.sync_gradients:
1215
                    accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm)
1216
1217
1218
1219
1220
1221
1222
1223
1224
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1225
1226
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

1247
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1248
                        accelerator.save_state(save_path)
1249
1250
1251
1252
1253
1254
1255
1256
1257
                        logger.info(f"Saved state to {save_path}")

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

1258
1259
1260
1261
1262
1263
1264
1265
1266
        if accelerator.is_main_process:
            if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
                logger.info(
                    f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
                    f" {args.validation_prompt}."
                )
                # create pipeline
                pipeline = DiffusionPipeline.from_pretrained(
                    args.pretrained_model_name_or_path,
1267
1268
                    unet=unwrap_model(unet),
                    text_encoder=None if args.pre_compute_text_embeddings else unwrap_model(text_encoder),
1269
                    revision=args.revision,
1270
                    variant=args.variant,
1271
1272
                    torch_dtype=weight_dtype,
                )
Will Berman's avatar
Will Berman committed
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288

                # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
                scheduler_args = {}

                if "variance_type" in pipeline.scheduler.config:
                    variance_type = pipeline.scheduler.config.variance_type

                    if variance_type in ["learned", "learned_range"]:
                        variance_type = "fixed_small"

                    scheduler_args["variance_type"] = variance_type

                pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
                    pipeline.scheduler.config, **scheduler_args
                )

1289
1290
1291
1292
                pipeline = pipeline.to(accelerator.device)
                pipeline.set_progress_bar_config(disable=True)

                # run inference
Will Berman's avatar
Will Berman committed
1293
1294
1295
1296
1297
1298
1299
1300
                generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
                if args.pre_compute_text_embeddings:
                    pipeline_args = {
                        "prompt_embeds": validation_prompt_encoder_hidden_states,
                        "negative_prompt_embeds": validation_prompt_negative_prompt_embeds,
                    }
                else:
                    pipeline_args = {"prompt": args.validation_prompt}
1301
1302

                if args.validation_images is None:
Will Berman's avatar
Will Berman committed
1303
1304
1305
1306
1307
                    images = []
                    for _ in range(args.num_validation_images):
                        with torch.cuda.amp.autocast():
                            image = pipeline(**pipeline_args, generator=generator).images[0]
                            images.append(image)
1308
1309
1310
1311
                else:
                    images = []
                    for image in args.validation_images:
                        image = Image.open(image)
Will Berman's avatar
Will Berman committed
1312
1313
                        with torch.cuda.amp.autocast():
                            image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
1314
                        images.append(image)
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

                for tracker in accelerator.trackers:
                    if tracker.name == "tensorboard":
                        np_images = np.stack([np.asarray(img) for img in images])
                        tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
                    if tracker.name == "wandb":
                        tracker.log(
                            {
                                "validation": [
                                    wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                    for i, image in enumerate(images)
                                ]
                            }
                        )

                del pipeline
                torch.cuda.empty_cache()
1332
1333
1334
1335

    # Save the lora layers
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
1336
        unet = unwrap_model(unet)
1337
        unet = unet.to(torch.float32)
1338

1339
        unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet))
1340
1341

        if args.train_text_encoder:
1342
            text_encoder = unwrap_model(text_encoder)
1343
            text_encoder_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(text_encoder))
Will Berman's avatar
Will Berman committed
1344
        else:
1345
            text_encoder_state_dict = None
1346

1347
1348
        LoraLoaderMixin.save_lora_weights(
            save_directory=args.output_dir,
1349
1350
            unet_lora_layers=unet_lora_state_dict,
            text_encoder_lora_layers=text_encoder_state_dict,
1351
        )
1352

Patrick von Platen's avatar
Patrick von Platen committed
1353
1354
1355
        # Final inference
        # Load previous pipeline
        pipeline = DiffusionPipeline.from_pretrained(
1356
            args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype
Patrick von Platen's avatar
Patrick von Platen committed
1357
        )
Will Berman's avatar
Will Berman committed
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)

Patrick von Platen's avatar
Patrick von Platen committed
1372
1373
1374
        pipeline = pipeline.to(accelerator.device)

        # load attention processors
1375
        pipeline.load_lora_weights(args.output_dir, weight_name="pytorch_lora_weights.safetensors")
Patrick von Platen's avatar
Patrick von Platen committed
1376
1377

        # run inference
1378
        images = []
1379
1380
        if args.validation_prompt and args.num_validation_images > 0:
            generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
1381
1382
1383
1384
            images = [
                pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
                for _ in range(args.num_validation_images)
            ]
Patrick von Platen's avatar
Patrick von Platen committed
1385

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
            for tracker in accelerator.trackers:
                if tracker.name == "tensorboard":
                    np_images = np.stack([np.asarray(img) for img in images])
                    tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
                if tracker.name == "wandb":
                    tracker.log(
                        {
                            "test": [
                                wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                for i, image in enumerate(images)
                            ]
                        }
                    )
1399

Patrick von Platen's avatar
Patrick von Platen committed
1400
1401
        if args.push_to_hub:
            save_model_card(
1402
                repo_id,
Patrick von Platen's avatar
Patrick von Platen committed
1403
1404
                images=images,
                base_model=args.pretrained_model_name_or_path,
1405
                train_text_encoder=args.train_text_encoder,
Patrick von Platen's avatar
Patrick von Platen committed
1406
1407
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1408
                pipeline=pipeline,
1409
            )
1410
1411
1412
1413
1414
1415
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1416
1417
1418
1419
1420
1421
1422

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)