train_dreambooth_lora.py 55.2 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import argparse
17
import copy
Will Berman's avatar
Will Berman committed
18
import gc
19
20
21
import logging
import math
import os
22
import shutil
23
24
25
import warnings
from pathlib import Path

26
import numpy as np
27
28
29
30
31
32
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
33
from accelerate.utils import ProjectConfiguration, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
34
from huggingface_hub import create_repo, upload_folder
35
from huggingface_hub.utils import insecure_hashlib
Patrick von Platen's avatar
Patrick von Platen committed
36
from packaging import version
37
38
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
44
45
46
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
47
48
49
50
51
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
52
    StableDiffusionPipeline,
53
54
    UNet2DConditionModel,
)
55
from diffusers.loaders import LoraLoaderMixin
56
from diffusers.optimization import get_scheduler
57
from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, is_wandb_available
58
from diffusers.utils.import_utils import is_xformers_available
59
from diffusers.utils.torch_utils import is_compiled_module
60
61
62


# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
63
check_min_version("0.26.0.dev0")
64
65
66
67

logger = get_logger(__name__)


68
69
70
71
72
73
74
75
76
def save_model_card(
    repo_id: str,
    images=None,
    base_model=str,
    train_text_encoder=False,
    prompt=str,
    repo_folder=None,
    pipeline: DiffusionPipeline = None,
):
Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
80
81
82
83
84
85
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
86
instance_prompt: {prompt}
Patrick von Platen's avatar
Patrick von Platen committed
87
tags:
88
89
- {'stable-diffusion' if isinstance(pipeline, StableDiffusionPipeline) else 'if'}
- {'stable-diffusion-diffusers' if isinstance(pipeline, StableDiffusionPipeline) else 'if-diffusers'}
Patrick von Platen's avatar
Patrick von Platen committed
90
91
- text-to-image
- diffusers
92
- lora
Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
96
inference: true
---
    """
    model_card = f"""
97
# LoRA DreamBooth - {repo_id}
Patrick von Platen's avatar
Patrick von Platen committed
98

hysts's avatar
hysts committed
99
These are LoRA adaption weights for {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. \n
Patrick von Platen's avatar
Patrick von Platen committed
100
{img_str}
101
102

LoRA for the text encoder was enabled: {train_text_encoder}.
Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=revision,
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
Will Berman's avatar
Will Berman committed
124
125
126
127
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    else:
        raise ValueError(f"{model_class} is not supported.")


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
148
149
150
151
152
153
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        required=True,
        help="The prompt with identifier specifying the instance",
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=50,
        help=(
            "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="lora-dreambooth-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
patil-suraj's avatar
patil-suraj committed
241
242
243
244
245
246
247
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
248
    )
249
250
251
252
253
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
            " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
277
    parser.add_argument(
278
        "--checkpoints_total_limit",
279
280
        type=int,
        default=None,
281
        help=("Max number of checkpoints to store."),
282
    )
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
334
335
336
337
338
339
340
341
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
Will Berman's avatar
Will Berman committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
427
428
429
430
431
432
433
434
435
436
437
438
439
    parser.add_argument(
        "--validation_images",
        required=False,
        default=None,
        nargs="+",
        help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
    )
    parser.add_argument(
        "--class_labels_conditioning",
        required=False,
        default=None,
        help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
    )
440
441
442
443
444
445
    parser.add_argument(
        "--rank",
        type=int,
        default=4,
        help=("The dimension of the LoRA update matrices."),
    )
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
    else:
        # logger is not available yet
        if args.class_data_dir is not None:
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
        if args.class_prompt is not None:
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")

Will Berman's avatar
Will Berman committed
468
469
470
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    return args


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
487
        class_num=None,
488
489
        size=512,
        center_crop=False,
Will Berman's avatar
Will Berman committed
490
        encoder_hidden_states=None,
491
        class_prompt_encoder_hidden_states=None,
Will Berman's avatar
Will Berman committed
492
        tokenizer_max_length=None,
493
494
495
496
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
Will Berman's avatar
Will Berman committed
497
        self.encoder_hidden_states = encoder_hidden_states
498
        self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
Will Berman's avatar
Will Berman committed
499
        self.tokenizer_max_length = tokenizer_max_length
500
501
502
503
504
505
506
507
508
509
510
511
512
513

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
            raise ValueError("Instance images root doesn't exists.")

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
            self.class_images_path = list(self.class_data_root.iterdir())
514
515
516
517
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
538
539
        instance_image = exif_transpose(instance_image)

540
541
542
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
Will Berman's avatar
Will Berman committed
543
544
545
546
547
548
549
550
551

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
552
553
554

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
555
556
            class_image = exif_transpose(class_image)

557
558
559
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
Will Berman's avatar
Will Berman committed
560

561
562
            if self.class_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
Will Berman's avatar
Will Berman committed
563
564
565
566
567
568
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
569
570
571
572
573

        return example


def collate_fn(examples, with_prior_preservation=False):
Will Berman's avatar
Will Berman committed
574
575
    has_attention_mask = "instance_attention_mask" in examples[0]

576
577
578
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

Will Berman's avatar
Will Berman committed
579
580
581
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

582
583
584
585
586
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]
Will Berman's avatar
Will Berman committed
587
588
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]
589
590
591
592
593
594
595
596
597
598

    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
Will Berman's avatar
Will Berman committed
599
600
601
602

    if has_attention_mask:
        batch["attention_mask"] = attention_mask

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    return batch


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


Will Berman's avatar
Will Berman committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
651
        return_dict=False,
Will Berman's avatar
Will Berman committed
652
653
654
655
656
657
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


658
659
660
def main(args):
    logging_dir = Path(args.output_dir, args.logging_dir)

661
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
662

663
664
665
666
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
667
        project_config=accelerator_project_config,
668
669
670
671
672
673
674
675
676
    )

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
677
678
679
680
681
682
683
    # TODO (sayakpaul): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Generate class images if prior preservation is enabled.
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
            pipeline = DiffusionPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
722
                variant=args.variant,
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
                images = pipeline(example["prompt"]).images

                for i, image in enumerate(images):
741
                    hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
742
743
744
745
746
747
748
749
750
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
751
        if args.output_dir is not None:
752
753
            os.makedirs(args.output_dir, exist_ok=True)

754
755
756
757
758
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
    # Load the tokenizer
    if args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
    elif args.pretrained_model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
            use_fast=False,
        )

    # import correct text encoder class
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)

    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
    text_encoder = text_encoder_cls.from_pretrained(
776
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
777
    )
778
    try:
Will Berman's avatar
Will Berman committed
779
        vae = AutoencoderKL.from_pretrained(
780
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
Will Berman's avatar
Will Berman committed
781
        )
782
783
784
    except OSError:
        # IF does not have a VAE so let's just set it to None
        # We don't have to error out here
Will Berman's avatar
Will Berman committed
785
786
        vae = None

787
    unet = UNet2DConditionModel.from_pretrained(
788
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
789
790
791
    )

    # We only train the additional adapter LoRA layers
Will Berman's avatar
Will Berman committed
792
793
    if vae is not None:
        vae.requires_grad_(False)
794
795
796
    text_encoder.requires_grad_(False)
    unet.requires_grad_(False)

797
    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
798
    # as these weights are only used for inference, keeping weights in full precision is not required.
799
800
801
802
803
804
805
806
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move unet, vae and text_encoder to device and cast to weight_dtype
    unet.to(accelerator.device, dtype=weight_dtype)
Will Berman's avatar
Will Berman committed
807
808
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)
809
810
811
812
    text_encoder.to(accelerator.device, dtype=weight_dtype)

    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
813
814
815
816
817
818
819
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
820
821
822
823
            unet.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")

824
825
826
827
828
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()

829
    # now we will add new LoRA weights to the attention layers
830
831
    unet_lora_config = LoraConfig(
        r=args.rank,
832
        lora_alpha=args.rank,
833
834
835
836
        init_lora_weights="gaussian",
        target_modules=["to_k", "to_q", "to_v", "to_out.0", "add_k_proj", "add_v_proj"],
    )
    unet.add_adapter(unet_lora_config)
837

838
    # The text encoder comes from 🤗 transformers, we will also attach adapters to it.
839
    if args.train_text_encoder:
840
        text_lora_config = LoraConfig(
841
842
843
844
            r=args.rank,
            lora_alpha=args.rank,
            init_lora_weights="gaussian",
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
845
846
        )
        text_encoder.add_adapter(text_lora_config)
847

848
849
850
851
852
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

853
854
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
855
856
857
858
859
860
861
        if accelerator.is_main_process:
            # there are only two options here. Either are just the unet attn processor layers
            # or there are the unet and text encoder atten layers
            unet_lora_layers_to_save = None
            text_encoder_lora_layers_to_save = None

            for model in models:
862
                if isinstance(model, type(unwrap_model(unet))):
863
                    unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model))
864
                elif isinstance(model, type(unwrap_model(text_encoder))):
865
866
867
                    text_encoder_lora_layers_to_save = convert_state_dict_to_diffusers(
                        get_peft_model_state_dict(model)
                    )
868
869
870
871
872
873
874
875
876
877
878
                else:
                    raise ValueError(f"unexpected save model: {model.__class__}")

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

            LoraLoaderMixin.save_lora_weights(
                output_dir,
                unet_lora_layers=unet_lora_layers_to_save,
                text_encoder_lora_layers=text_encoder_lora_layers_to_save,
            )
879
880

    def load_model_hook(models, input_dir):
Will Berman's avatar
Will Berman committed
881
882
        unet_ = None
        text_encoder_ = None
883

Will Berman's avatar
Will Berman committed
884
885
        while len(models) > 0:
            model = models.pop()
886

887
            if isinstance(model, type(unwrap_model(unet))):
Will Berman's avatar
Will Berman committed
888
                unet_ = model
889
            elif isinstance(model, type(unwrap_model(text_encoder))):
Will Berman's avatar
Will Berman committed
890
891
892
893
                text_encoder_ = model
            else:
                raise ValueError(f"unexpected save model: {model.__class__}")

894
895
        lora_state_dict, network_alphas = LoraLoaderMixin.lora_state_dict(input_dir)
        LoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_)
Will Berman's avatar
Will Berman committed
896
        LoraLoaderMixin.load_lora_into_text_encoder(
897
            lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
Will Berman's avatar
Will Berman committed
898
        )
899
900
901
902

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

    # Optimizer creation
927
928
929
930
    params_to_optimize = list(filter(lambda p: p.requires_grad, unet.parameters()))
    if args.train_text_encoder:
        params_to_optimize = params_to_optimize + list(filter(lambda p: p.requires_grad, text_encoder.parameters()))

931
    optimizer = optimizer_class(
932
        params_to_optimize,
933
934
935
936
937
938
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

Will Berman's avatar
Will Berman committed
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

961
        if args.class_prompt is not None:
962
            pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt)
Will Berman's avatar
Will Berman committed
963
        else:
964
            pre_computed_class_prompt_encoder_hidden_states = None
Will Berman's avatar
Will Berman committed
965
966
967
968
969
970
971
972
973
974

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
975
        pre_computed_class_prompt_encoder_hidden_states = None
Will Berman's avatar
Will Berman committed
976

977
978
979
980
981
982
    # Dataset and DataLoaders creation:
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
983
        class_num=args.num_class_images,
984
985
986
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
Will Berman's avatar
Will Berman committed
987
        encoder_hidden_states=pre_computed_encoder_hidden_states,
988
        class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
Will Berman's avatar
Will Berman committed
989
        tokenizer_max_length=args.tokenizer_max_length,
990
991
992
993
994
995
996
    )

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
997
        num_workers=args.dataloader_num_workers,
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1010
1011
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
1012
1013
1014
1015
1016
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
1017
    if args.train_text_encoder:
Will Berman's avatar
Will Berman committed
1018
1019
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
1020
1021
        )
    else:
Will Berman's avatar
Will Berman committed
1022
1023
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
1024
        )
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
1036
        tracker_config = vars(copy.deepcopy(args))
1037
1038
        tracker_config.pop("validation_images")
        accelerator.init_trackers("dreambooth-lora", config=tracker_config)
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1063
1064
1065
1066
1067
1068
1069
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
1070
            initial_global_step = 0
1071
1072
1073
1074
1075
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

1076
            initial_global_step = global_step
1077
            first_epoch = global_step // num_update_steps_per_epoch
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
1088
1089
1090

    for epoch in range(first_epoch, args.num_train_epochs):
        unet.train()
1091
1092
        if args.train_text_encoder:
            text_encoder.train()
1093
1094
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
Will Berman's avatar
Will Berman committed
1095
1096
1097
1098
1099
1100
1101
1102
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)

                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(pixel_values).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values
1103
1104

                # Sample noise that we'll add to the latents
Will Berman's avatar
Will Berman committed
1105
                noise = torch.randn_like(model_input)
1106
                bsz, channels, height, width = model_input.shape
1107
                # Sample a random timestep for each image
Will Berman's avatar
Will Berman committed
1108
1109
1110
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1111
1112
                timesteps = timesteps.long()

Will Berman's avatar
Will Berman committed
1113
                # Add noise to the model input according to the noise magnitude at each timestep
1114
                # (this is the forward diffusion process)
Will Berman's avatar
Will Berman committed
1115
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1116
1117

                # Get the text embedding for conditioning
Will Berman's avatar
Will Berman committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1127

1128
                if unwrap_model(unet).config.in_channels == channels * 2:
1129
                    noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
1130
1131
1132
1133
1134
1135

                if args.class_labels_conditioning == "timesteps":
                    class_labels = timesteps
                else:
                    class_labels = None

1136
                # Predict the noise residual
1137
                model_pred = unet(
1138
1139
1140
1141
1142
1143
                    noisy_model_input,
                    timesteps,
                    encoder_hidden_states,
                    class_labels=class_labels,
                    return_dict=False,
                )[0]
Will Berman's avatar
Will Berman committed
1144
1145
1146
1147
1148
1149

                # if model predicts variance, throw away the prediction. we will only train on the
                # simplified training objective. This means that all schedulers using the fine tuned
                # model must be configured to use one of the fixed variance variance types.
                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1150
1151
1152
1153
1154

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
Will Berman's avatar
Will Berman committed
1155
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")

                if args.with_prior_preservation:
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)

                    # Compute instance loss
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")

                accelerator.backward(loss)
                if accelerator.sync_gradients:
1177
                    accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm)
1178
1179
1180
1181
1182
1183
1184
1185
1186
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1187
1188
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

1209
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1210
                        accelerator.save_state(save_path)
1211
1212
1213
1214
1215
1216
1217
1218
1219
                        logger.info(f"Saved state to {save_path}")

            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

1220
1221
1222
1223
1224
1225
1226
1227
1228
        if accelerator.is_main_process:
            if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
                logger.info(
                    f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
                    f" {args.validation_prompt}."
                )
                # create pipeline
                pipeline = DiffusionPipeline.from_pretrained(
                    args.pretrained_model_name_or_path,
1229
1230
                    unet=unwrap_model(unet),
                    text_encoder=None if args.pre_compute_text_embeddings else unwrap_model(text_encoder),
1231
                    revision=args.revision,
1232
                    variant=args.variant,
1233
1234
                    torch_dtype=weight_dtype,
                )
Will Berman's avatar
Will Berman committed
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

                # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
                scheduler_args = {}

                if "variance_type" in pipeline.scheduler.config:
                    variance_type = pipeline.scheduler.config.variance_type

                    if variance_type in ["learned", "learned_range"]:
                        variance_type = "fixed_small"

                    scheduler_args["variance_type"] = variance_type

                pipeline.scheduler = DPMSolverMultistepScheduler.from_config(
                    pipeline.scheduler.config, **scheduler_args
                )

1251
1252
1253
1254
                pipeline = pipeline.to(accelerator.device)
                pipeline.set_progress_bar_config(disable=True)

                # run inference
Will Berman's avatar
Will Berman committed
1255
1256
1257
1258
1259
1260
1261
1262
                generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
                if args.pre_compute_text_embeddings:
                    pipeline_args = {
                        "prompt_embeds": validation_prompt_encoder_hidden_states,
                        "negative_prompt_embeds": validation_prompt_negative_prompt_embeds,
                    }
                else:
                    pipeline_args = {"prompt": args.validation_prompt}
1263
1264

                if args.validation_images is None:
Will Berman's avatar
Will Berman committed
1265
1266
1267
1268
1269
                    images = []
                    for _ in range(args.num_validation_images):
                        with torch.cuda.amp.autocast():
                            image = pipeline(**pipeline_args, generator=generator).images[0]
                            images.append(image)
1270
1271
1272
1273
                else:
                    images = []
                    for image in args.validation_images:
                        image = Image.open(image)
Will Berman's avatar
Will Berman committed
1274
1275
                        with torch.cuda.amp.autocast():
                            image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
1276
                        images.append(image)
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293

                for tracker in accelerator.trackers:
                    if tracker.name == "tensorboard":
                        np_images = np.stack([np.asarray(img) for img in images])
                        tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
                    if tracker.name == "wandb":
                        tracker.log(
                            {
                                "validation": [
                                    wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                    for i, image in enumerate(images)
                                ]
                            }
                        )

                del pipeline
                torch.cuda.empty_cache()
1294
1295
1296
1297

    # Save the lora layers
    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
1298
        unet = unwrap_model(unet)
1299
        unet = unet.to(torch.float32)
1300

1301
        unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet))
1302
1303

        if args.train_text_encoder:
1304
            text_encoder = unwrap_model(text_encoder)
1305
            text_encoder_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(text_encoder))
Will Berman's avatar
Will Berman committed
1306
        else:
1307
            text_encoder_state_dict = None
1308

1309
1310
        LoraLoaderMixin.save_lora_weights(
            save_directory=args.output_dir,
1311
1312
            unet_lora_layers=unet_lora_state_dict,
            text_encoder_lora_layers=text_encoder_state_dict,
1313
        )
1314

Patrick von Platen's avatar
Patrick von Platen committed
1315
1316
1317
        # Final inference
        # Load previous pipeline
        pipeline = DiffusionPipeline.from_pretrained(
1318
            args.pretrained_model_name_or_path, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype
Patrick von Platen's avatar
Patrick von Platen committed
1319
        )
Will Berman's avatar
Will Berman committed
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args)

Patrick von Platen's avatar
Patrick von Platen committed
1334
1335
1336
        pipeline = pipeline.to(accelerator.device)

        # load attention processors
1337
        pipeline.load_lora_weights(args.output_dir, weight_name="pytorch_lora_weights.safetensors")
Patrick von Platen's avatar
Patrick von Platen committed
1338
1339

        # run inference
1340
        images = []
1341
1342
        if args.validation_prompt and args.num_validation_images > 0:
            generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
1343
1344
1345
1346
            images = [
                pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0]
                for _ in range(args.num_validation_images)
            ]
Patrick von Platen's avatar
Patrick von Platen committed
1347

1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
            for tracker in accelerator.trackers:
                if tracker.name == "tensorboard":
                    np_images = np.stack([np.asarray(img) for img in images])
                    tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC")
                if tracker.name == "wandb":
                    tracker.log(
                        {
                            "test": [
                                wandb.Image(image, caption=f"{i}: {args.validation_prompt}")
                                for i, image in enumerate(images)
                            ]
                        }
                    )
1361

Patrick von Platen's avatar
Patrick von Platen committed
1362
1363
        if args.push_to_hub:
            save_model_card(
1364
                repo_id,
Patrick von Platen's avatar
Patrick von Platen committed
1365
1366
                images=images,
                base_model=args.pretrained_model_name_or_path,
1367
                train_text_encoder=args.train_text_encoder,
Patrick von Platen's avatar
Patrick von Platen committed
1368
1369
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1370
                pipeline=pipeline,
1371
            )
1372
1373
1374
1375
1376
1377
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1378
1379
1380
1381
1382
1383
1384

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)