train_dreambooth.py 57.5 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

16
import argparse
17
import copy
18
import gc
19
import hashlib
20
import importlib
21
import itertools
Suraj Patil's avatar
Suraj Patil committed
22
import logging
23
24
import math
import os
25
import shutil
26
import warnings
27
28
from pathlib import Path

29
import numpy as np
30
31
32
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
33
import transformers
34
35
from accelerate import Accelerator
from accelerate.logging import get_logger
36
from accelerate.utils import ProjectConfiguration, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
37
38
39
40
41
42
43
44
45
46
from huggingface_hub import create_repo, model_info, upload_folder
from packaging import version
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
47
48
49
50
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
51
    StableDiffusionPipeline,
52
53
    UNet2DConditionModel,
)
54
from diffusers.optimization import get_scheduler
55
from diffusers.utils import check_min_version, is_wandb_available
56
57
from diffusers.utils.import_utils import is_xformers_available

58

59
60
61
if is_wandb_available():
    import wandb

62
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
63
check_min_version("0.22.0.dev0")
64

65
66
67
logger = get_logger(__name__)


68
69
70
71
72
73
74
75
76
def save_model_card(
    repo_id: str,
    images=None,
    base_model=str,
    train_text_encoder=False,
    prompt=str,
    repo_folder=None,
    pipeline: DiffusionPipeline = None,
):
77
78
79
80
81
82
83
84
85
86
87
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
instance_prompt: {prompt}
tags:
88
89
- {'stable-diffusion' if isinstance(pipeline, StableDiffusionPipeline) else 'if'}
- {'stable-diffusion-diffusers' if isinstance(pipeline, StableDiffusionPipeline) else 'if-diffusers'}
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
- text-to-image
- diffusers
- dreambooth
inference: true
---
    """
    model_card = f"""
# DreamBooth - {repo_id}

This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following. \n
{img_str}

DreamBooth for the text encoder was enabled: {train_text_encoder}.
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


109
def log_validation(
110
111
112
113
114
115
116
117
118
119
    text_encoder,
    tokenizer,
    unet,
    vae,
    args,
    accelerator,
    weight_dtype,
    global_step,
    prompt_embeds,
    negative_prompt_embeds,
120
):
121
122
123
124
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
125
126
127
128
129
130

    pipeline_args = {}

    if vae is not None:
        pipeline_args["vae"] = vae

131
132
133
    if text_encoder is not None:
        text_encoder = accelerator.unwrap_model(text_encoder)

134
135
136
137
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        tokenizer=tokenizer,
138
        text_encoder=text_encoder,
139
140
141
        unet=accelerator.unwrap_model(unet),
        revision=args.revision,
        torch_dtype=weight_dtype,
142
        **pipeline_args,
143
    )
144
145
146
147
148
149
150
151
152
153
154
155

    # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
    scheduler_args = {}

    if "variance_type" in pipeline.scheduler.config:
        variance_type = pipeline.scheduler.config.variance_type

        if variance_type in ["learned", "learned_range"]:
            variance_type = "fixed_small"

        scheduler_args["variance_type"] = variance_type

156
157
158
    module = importlib.import_module("diffusers")
    scheduler_class = getattr(module, args.validation_scheduler)
    pipeline.scheduler = scheduler_class.from_config(pipeline.scheduler.config, **scheduler_args)
159
160
161
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

162
163
164
165
166
167
168
169
    if args.pre_compute_text_embeddings:
        pipeline_args = {
            "prompt_embeds": prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
        }
    else:
        pipeline_args = {"prompt": args.validation_prompt}

170
171
172
    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
173
174
175
176
177
178
179
180
181
182
    if args.validation_images is None:
        for _ in range(args.num_validation_images):
            with torch.autocast("cuda"):
                image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0]
            images.append(image)
    else:
        for image in args.validation_images:
            image = Image.open(image)
            image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
            images.append(image)
183
184
185
186

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
187
            tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC")
188
189
190
191
192
193
194
195
196
197
198
199
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()

200
201
    return images

202

203
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
204
205
206
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
207
        revision=revision,
208
209
210
211
212
213
214
215
216
217
218
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
219
220
221
222
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
223
224
225
226
    else:
        raise ValueError(f"{model_class} is not supported.")


227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
def compute_snr(timesteps, noise_scheduler):
    """
    Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
    """
    alphas_cumprod = noise_scheduler.alphas_cumprod
    sqrt_alphas_cumprod = alphas_cumprod**0.5
    sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
    # Expand the tensors.
    # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
    sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
    while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
    alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

    sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(device=timesteps.device)[timesteps].float()
    while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
    sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

    # Compute SNR
    snr = (alpha / sigma) ** 2
    return snr


Suraj Patil's avatar
Suraj Patil committed
251
def parse_args(input_args=None):
252
253
254
255
256
257
258
259
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
260
261
262
263
264
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
265
266
267
268
        help=(
            "Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
            " float32 precision."
        ),
269
    )
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
294
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
295
        help="The prompt with identifier specifying the instance",
296
297
298
299
300
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
301
        help="The prompt to specify images in the same class as provided instance images.",
302
303
304
305
306
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
307
        help="Flag to add prior preservation loss.",
308
309
310
311
312
313
314
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
315
316
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
336
337
338
        "--center_crop",
        default=False,
        action="store_true",
patil-suraj's avatar
patil-suraj committed
339
340
341
342
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
343
    )
344
345
346
347
348
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
349
350
351
352
353
354
355
356
357
358
359
360
361
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
362
363
364
365
366
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
367
368
369
370
371
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
372
373
        ),
    )
374
    parser.add_argument(
375
        "--checkpoints_total_limit",
376
377
378
379
380
381
382
383
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more details"
        ),
    )
384
385
386
387
388
389
390
391
392
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
428
429
430
431
432
433
434
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
435
436
437
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
438
439
440
441
442
443
444
445
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
468
469
470
471
472
473
474
475
476
477
478
479
480
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
481
482
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
483
484
        ),
    )
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
507
508
509
    parser.add_argument(
        "--mixed_precision",
        type=str,
510
        default=None,
511
512
        choices=["no", "fp16", "bf16"],
        help=(
513
514
515
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
516
517
        ),
    )
518
519
520
521
522
523
524
525
526
527
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
528
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
529
530
531
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
532
533
534
535
536
537
538
539
540
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
541

542
543
544
545
546
547
548
549
550
    parser.add_argument(
        "--offset_noise",
        action="store_true",
        default=False,
        help=(
            "Fine-tuning against a modified noise"
            " See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information."
        ),
    )
551
552
553
554
555
556
557
    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
        "More details here: https://arxiv.org/abs/2303.09556.",
    )
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
    parser.add_argument(
        "--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder"
    )
579
580
581
582
583
584
585
586
587
588
589
590
591
    parser.add_argument(
        "--validation_images",
        required=False,
        default=None,
        nargs="+",
        help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
    )
    parser.add_argument(
        "--class_labels_conditioning",
        required=False,
        default=None,
        help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
    )
592
593
594
595
596
597
598
    parser.add_argument(
        "--validation_scheduler",
        type=str,
        default="DPMSolverMultistepScheduler",
        choices=["DPMSolverMultistepScheduler", "DDPMScheduler"],
        help="Select which scheduler to use for validation. DDPMScheduler is recommended for DeepFloyd IF.",
    )
599

600
601
602
603
604
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

605
606
607
608
609
610
611
612
613
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
614
    else:
615
        # logger is not available yet
616
        if args.class_data_dir is not None:
617
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
618
        if args.class_prompt is not None:
619
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
620

621
622
623
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

624
625
626
627
628
    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
629
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
630
631
632
633
634
635
636
637
638
639
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
640
        class_num=None,
641
642
        size=512,
        center_crop=False,
643
        encoder_hidden_states=None,
644
        class_prompt_encoder_hidden_states=None,
645
        tokenizer_max_length=None,
646
647
648
649
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
650
        self.encoder_hidden_states = encoder_hidden_states
651
        self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
652
        self.tokenizer_max_length = tokenizer_max_length
653
654
655

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
656
            raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
657
658
659
660
661
662
663
664
665

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
666
            self.class_images_path = list(self.class_data_root.iterdir())
667
668
669
670
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
691
692
        instance_image = exif_transpose(instance_image)

693
694
695
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
696
697
698
699
700
701
702
703
704

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
705
706
707

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
708
709
            class_image = exif_transpose(class_image)

710
711
712
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
713

714
715
            if self.class_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
716
717
718
719
720
721
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
722
723
724
725

        return example


726
def collate_fn(examples, with_prior_preservation=False):
727
728
    has_attention_mask = "instance_attention_mask" in examples[0]

729
730
731
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

732
733
734
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

735
736
737
738
739
740
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

741
742
743
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]

744
745
746
747
748
749
750
751
752
    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
753
754

    if has_attention_mask:
755
        attention_mask = torch.cat(attention_mask, dim=0)
756
757
        batch["attention_mask"] = attention_mask

758
759
760
    return batch


761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
def model_has_vae(args):
    config_file_name = os.path.join("vae", AutoencoderKL.config_name)
    if os.path.isdir(args.pretrained_model_name_or_path):
        config_file_name = os.path.join(args.pretrained_model_name_or_path, config_file_name)
        return os.path.isfile(config_file_name)
    else:
        files_in_repo = model_info(args.pretrained_model_name_or_path, revision=args.revision).siblings
        return any(file.rfilename == config_file_name for file in files_in_repo)


def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


822
def main(args):
823
824
    logging_dir = Path(args.output_dir, args.logging_dir)

825
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
826

827
828
829
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
830
        log_with=args.report_to,
831
        project_config=accelerator_project_config,
832
833
    )

834
835
836
837
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

838
839
840
841
842
843
844
845
846
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
862
863
864
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
865
    # Generate class images if prior preservation is enabled.
866
867
868
869
870
871
872
873
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
874
875
876
877
878
879
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
880
            pipeline = DiffusionPipeline.from_pretrained(
881
882
883
884
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
900
                images = pipeline(example["prompt"]).images
901
902

                for i, image in enumerate(images):
903
904
905
                    hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
906
907
908
909
910
911
912

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
913
        if args.output_dir is not None:
914
915
            os.makedirs(args.output_dir, exist_ok=True)

916
917
918
919
920
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

921
922
    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
923
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
924
    elif args.pretrained_model_name_or_path:
925
        tokenizer = AutoTokenizer.from_pretrained(
926
927
928
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
929
            use_fast=False,
930
        )
931

932
    # import correct text encoder class
933
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
934

Suraj Patil's avatar
Suraj Patil committed
935
936
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
937
    text_encoder = text_encoder_cls.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
938
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
939
    )
940
941
942
943
944
945
946
947

    if model_has_vae(args):
        vae = AutoencoderKL.from_pretrained(
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision
        )
    else:
        vae = None

948
    unet = UNet2DConditionModel.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
949
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
950
    )
951

952
953
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
954
955
956
957
        if accelerator.is_main_process:
            for model in models:
                sub_dir = "unet" if isinstance(model, type(accelerator.unwrap_model(unet))) else "text_encoder"
                model.save_pretrained(os.path.join(output_dir, sub_dir))
958

959
960
                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

    def load_model_hook(models, input_dir):
        while len(models) > 0:
            # pop models so that they are not loaded again
            model = models.pop()

            if isinstance(model, type(accelerator.unwrap_model(text_encoder))):
                # load transformers style into model
                load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder")
                model.config = load_model.config
            else:
                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

            model.load_state_dict(load_model.state_dict())
            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)
981

982
983
984
    if vae is not None:
        vae.requires_grad_(False)

Suraj Patil's avatar
Suraj Patil committed
985
986
987
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

988
989
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
990
991
992
993
994
995
996
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
997
            unet.enable_xformers_memory_efficient_attention()
998
999
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
1000

1001
1002
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
1003
1004
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
1005

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
    # Check that all trainable models are in full precision
    low_precision_error_string = (
        "Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training. copy of the weights should still be float32."
    )

    if accelerator.unwrap_model(unet).dtype != torch.float32:
        raise ValueError(
            f"Unet loaded as datatype {accelerator.unwrap_model(unet).dtype}. {low_precision_error_string}"
        )

    if args.train_text_encoder and accelerator.unwrap_model(text_encoder).dtype != torch.float32:
        raise ValueError(
            f"Text encoder loaded as datatype {accelerator.unwrap_model(text_encoder).dtype}."
            f" {low_precision_error_string}"
        )

Suraj Patil's avatar
Suraj Patil committed
1023
1024
1025
1026
1027
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
1046
    # Optimizer creation
1047
1048
1049
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
1050
    optimizer = optimizer_class(
1051
        params_to_optimize,
1052
1053
1054
1055
1056
1057
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

1080
1081
        if args.class_prompt is not None:
            pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt)
1082
        else:
1083
            pre_computed_class_prompt_encoder_hidden_states = None
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
1094
        pre_computed_class_prompt_encoder_hidden_states = None
1095

Suraj Patil's avatar
Suraj Patil committed
1096
    # Dataset and DataLoaders creation:
1097
1098
1099
1100
1101
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
1102
        class_num=args.num_class_images,
1103
1104
1105
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
1106
        encoder_hidden_states=pre_computed_encoder_hidden_states,
1107
        class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
1108
        tokenizer_max_length=args.tokenizer_max_length,
1109
1110
1111
    )

    train_dataloader = torch.utils.data.DataLoader(
1112
1113
1114
1115
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
1116
        num_workers=args.dataloader_num_workers,
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1129
1130
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
1131
1132
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
1133
1134
    )

Suraj Patil's avatar
Suraj Patil committed
1135
    # Prepare everything with our `accelerator`.
1136
1137
1138
1139
1140
1141
1142
1143
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
1144

1145
1146
    # For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
1147
    weight_dtype = torch.float32
1148
    if accelerator.mixed_precision == "fp16":
1149
        weight_dtype = torch.float16
1150
    elif accelerator.mixed_precision == "bf16":
1151
1152
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
1153
    # Move vae and text_encoder to device and cast to weight_dtype
1154
1155
1156
1157
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)

    if not args.train_text_encoder and text_encoder is not None:
1158
        text_encoder.to(accelerator.device, dtype=weight_dtype)
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
1170
        tracker_config = vars(copy.deepcopy(args))
1171
1172
        tracker_config.pop("validation_images")
        accelerator.init_trackers("dreambooth", config=tracker_config)
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
1185
1186
1187
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
1188
    # Potentially load in the weights and states from a previous save
1189
1190
1191
1192
1193
1194
1195
1196
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the mos recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

            resume_global_step = global_step * args.gradient_accumulation_steps
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
1212

1213
    # Only show the progress bar once on each machine.
1214
    progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
1215
1216
    progress_bar.set_description("Steps")

1217
    for epoch in range(first_epoch, args.num_train_epochs):
1218
        unet.train()
1219
1220
        if args.train_text_encoder:
            text_encoder.train()
1221
        for step, batch in enumerate(train_dataloader):
1222
1223
1224
1225
1226
1227
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

1228
            with accelerator.accumulate(unet):
1229
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
1230

1231
1232
1233
1234
1235
1236
1237
1238
                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values

                # Sample noise that we'll add to the model input
1239
                if args.offset_noise:
1240
1241
                    noise = torch.randn_like(model_input) + 0.1 * torch.randn(
                        model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device
1242
1243
                    )
                else:
1244
                    noise = torch.randn_like(model_input)
1245
                bsz, channels, height, width = model_input.shape
1246
                # Sample a random timestep for each image
1247
1248
1249
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1250
1251
                timesteps = timesteps.long()

1252
                # Add noise to the model input according to the noise magnitude at each timestep
1253
                # (this is the forward diffusion process)
1254
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1255
1256

                # Get the text embedding for conditioning
1257
1258
1259
1260
1261
1262
1263
1264
1265
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1266

1267
                if accelerator.unwrap_model(unet).config.in_channels == channels * 2:
1268
                    noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
1269
1270
1271
1272
1273
1274

                if args.class_labels_conditioning == "timesteps":
                    class_labels = timesteps
                else:
                    class_labels = None

1275
                # Predict the noise residual
1276
1277
1278
                model_pred = unet(
                    noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels
                ).sample
1279
1280
1281

                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1282
1283
1284
1285
1286

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
1287
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1288
1289
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
1290
1291

                if args.with_prior_preservation:
1292
1293
1294
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
1295
1296
                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
1297

1298
1299
                # Compute instance loss
                if args.snr_gamma is None:
1300
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1301
1302
1303
1304
1305
1306
1307
1308
                else:
                    # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.
                    snr = compute_snr(timesteps, noise_scheduler)
                    base_weight = (
                        torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
                    )
1309

1310
1311
1312
1313
1314
1315
1316
1317
1318
                    if noise_scheduler.config.prediction_type == "v_prediction":
                        # Velocity objective needs to be floored to an SNR weight of one.
                        mse_loss_weights = base_weight + 1
                    else:
                        # Epsilon and sample both use the same loss weights.
                        mse_loss_weights = base_weight
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss = loss.mean()
1319

1320
                if args.with_prior_preservation:
1321
1322
1323
1324
                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss

                accelerator.backward(loss)
1325
                if accelerator.sync_gradients:
1326
1327
1328
1329
1330
1331
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
1332
1333
                optimizer.step()
                lr_scheduler.step()
1334
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)
1335
1336
1337
1338
1339
1340

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1341
1342
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

1363
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1364
1365
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
1366

1367
1368
                    images = []

1369
                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
1370
                        images = log_validation(
1371
1372
1373
1374
1375
1376
1377
                            text_encoder,
                            tokenizer,
                            unet,
                            vae,
                            args,
                            accelerator,
                            weight_dtype,
1378
                            global_step,
1379
1380
                            validation_prompt_encoder_hidden_states,
                            validation_prompt_negative_prompt_embeds,
1381
                        )
1382

1383
1384
1385
1386
1387
1388
1389
1390
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

    # Create the pipeline using using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
1391
    accelerator.wait_for_everyone()
1392
    if accelerator.is_main_process:
1393
1394
1395
1396
1397
1398
1399
1400
        pipeline_args = {}

        if text_encoder is not None:
            pipeline_args["text_encoder"] = accelerator.unwrap_model(text_encoder)

        if args.skip_save_text_encoder:
            pipeline_args["text_encoder"] = None

1401
        pipeline = DiffusionPipeline.from_pretrained(
1402
1403
            args.pretrained_model_name_or_path,
            unet=accelerator.unwrap_model(unet),
1404
            revision=args.revision,
1405
            **pipeline_args,
1406
        )
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args)

1421
1422
1423
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
1424
1425
1426
1427
1428
1429
1430
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1431
                pipeline=pipeline,
1432
            )
1433
1434
1435
1436
1437
1438
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1439
1440
1441
1442
1443

    accelerator.end_training()


if __name__ == "__main__":
1444
1445
    args = parse_args()
    main(args)