test_unclip.py 16.2 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
Will Berman's avatar
Will Berman committed
22
23
24

from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
Dhruv Nair's avatar
Dhruv Nair committed
25
26
27
28
29
30
31
32
33
from diffusers.utils.testing_utils import (
    enable_full_determinism,
    load_numpy,
    nightly,
    require_torch_gpu,
    skip_mps,
    slow,
    torch_device,
)
Will Berman's avatar
Will Berman committed
34

35
36
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
Will Berman's avatar
Will Berman committed
37
38


39
enable_full_determinism()
40
41


42
43
class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = UnCLIPPipeline
44
45
46
47
48
49
50
51
52
53
    params = TEXT_TO_IMAGE_PARAMS - {
        "negative_prompt",
        "height",
        "width",
        "negative_prompt_embeds",
        "guidance_scale",
        "prompt_embeds",
        "cross_attention_kwargs",
    }
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
54
55
56
57
58
59
60
    required_optional_params = [
        "generator",
        "return_dict",
        "prior_num_inference_steps",
        "decoder_num_inference_steps",
        "super_res_num_inference_steps",
    ]
61
    test_xformers_attention = False
Will Berman's avatar
Will Berman committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {
            "num_attention_heads": 2,
            "attention_head_dim": 12,
            "embedding_dim": self.text_embedder_hidden_size,
            "num_layers": 1,
        }

        model = PriorTransformer(**model_kwargs)
        return model

    @property
    def dummy_text_proj(self):
        torch.manual_seed(0)

        model_kwargs = {
            "clip_embeddings_dim": self.text_embedder_hidden_size,
            "time_embed_dim": self.time_embed_dim,
            "cross_attention_dim": self.cross_attention_dim,
        }

        model = UnCLIPTextProjModel(**model_kwargs)
        return model

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
137
            "sample_size": 32,
Will Berman's avatar
Will Berman committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
            # RGB in channels
            "in_channels": 3,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 6,
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": "identity",
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_super_res_kwargs(self):
        return {
159
            "sample_size": 64,
Will Berman's avatar
Will Berman committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
            "layers_per_block": 1,
            "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
            "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "in_channels": 6,
            "out_channels": 3,
        }

    @property
    def dummy_super_res_first(self):
        torch.manual_seed(0)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    @property
    def dummy_super_res_last(self):
        # seeded differently to get different unet than `self.dummy_super_res_first`
        torch.manual_seed(1)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

183
    def get_dummy_components(self):
Will Berman's avatar
Will Berman committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        prior = self.dummy_prior
        decoder = self.dummy_decoder
        text_proj = self.dummy_text_proj
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        super_res_first = self.dummy_super_res_first
        super_res_last = self.dummy_super_res_last

        prior_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="sample",
            num_train_timesteps=1000,
            clip_sample_range=5.0,
        )

        decoder_scheduler = UnCLIPScheduler(
            variance_type="learned_range",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        super_res_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        components = {
            "prior": prior,
            "decoder": decoder,
            "text_proj": text_proj,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "super_res_first": super_res_first,
            "super_res_last": super_res_last,
            "prior_scheduler": prior_scheduler,
            "decoder_scheduler": decoder_scheduler,
            "super_res_scheduler": super_res_scheduler,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "generator": generator,
            "prior_num_inference_steps": 2,
            "decoder_num_inference_steps": 2,
            "super_res_num_inference_steps": 2,
            "output_type": "numpy",
        }
        return inputs

    def test_unclip(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
Will Berman's avatar
Will Berman committed
247
248
249
250
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

251
        output = pipe(**self.get_dummy_inputs(device))
Will Berman's avatar
Will Berman committed
252
253
254
        image = output.images

        image_from_tuple = pipe(
255
            **self.get_dummy_inputs(device),
Will Berman's avatar
Will Berman committed
256
257
258
259
260
261
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

262
        assert image.shape == (1, 64, 64, 3)
Will Berman's avatar
Will Berman committed
263
264
265
266

        expected_slice = np.array(
            [
                0.9997,
267
268
269
270
271
272
273
274
                0.9988,
                0.0028,
                0.9997,
                0.9984,
                0.9965,
                0.0029,
                0.9986,
                0.0025,
Will Berman's avatar
Will Berman committed
275
276
277
278
279
280
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

281
282
283
284
285
286
    def test_unclip_passed_text_embed(self):
        device = torch.device("cpu")

        class DummyScheduler:
            init_noise_sigma = 1

287
        components = self.get_dummy_components()
288

289
        pipe = self.pipeline_class(**components)
290
291
        pipe = pipe.to(device)

292
293
294
295
296
297
        prior = components["prior"]
        decoder = components["decoder"]
        super_res_first = components["super_res_first"]
        tokenizer = components["tokenizer"]
        text_encoder = components["text_encoder"]

298
299
300
301
302
303
304
305
        generator = torch.Generator(device=device).manual_seed(0)
        dtype = prior.dtype
        batch_size = 1

        shape = (batch_size, prior.config.embedding_dim)
        prior_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )
306
        shape = (batch_size, decoder.config.in_channels, decoder.config.sample_size, decoder.config.sample_size)
307
308
309
310
311
312
        decoder_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        shape = (
            batch_size,
313
314
315
            super_res_first.config.in_channels // 2,
            super_res_first.config.sample_size,
            super_res_first.config.sample_size,
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        )
        super_res_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        pipe.set_progress_bar_config(disable=None)

        prompt = "this is a prompt example"

        generator = torch.Generator(device=device).manual_seed(0)
        output = pipe(
            [prompt],
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            prior_latents=prior_latents,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            output_type="np",
        )
        image = output.images

        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=tokenizer.model_max_length,
            return_tensors="pt",
        )
        text_model_output = text_encoder(text_inputs.input_ids)
        text_attention_mask = text_inputs.attention_mask

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_text = pipe(
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            prior_latents=prior_latents,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            text_model_output=text_model_output,
            text_attention_mask=text_attention_mask,
            output_type="np",
        )[0]

        # make sure passing text embeddings manually is identical
        assert np.abs(image - image_from_text).max() < 1e-4

365
366
    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because UnCLIP GPU undeterminism requires a looser check.
367
    @skip_mps
368
369
370
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"

Patrick von Platen's avatar
Patrick von Platen committed
371
        self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference, expected_max_diff=0.01)
372
373
374

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because UnCLIP undeterminism requires a looser check.
375
    @skip_mps
376
377
378
    def test_inference_batch_single_identical(self):
        test_max_difference = torch_device == "cpu"
        relax_max_difference = True
379
380
381
382
383
        additional_params_copy_to_batched_inputs = [
            "prior_num_inference_steps",
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]
384
385

        self._test_inference_batch_single_identical(
386
387
388
            test_max_difference=test_max_difference,
            relax_max_difference=relax_max_difference,
            additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
389
390
391
        )

    def test_inference_batch_consistent(self):
392
393
394
395
396
397
        additional_params_copy_to_batched_inputs = [
            "prior_num_inference_steps",
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]

398
399
400
        if torch_device == "mps":
            # TODO: MPS errors with larger batch sizes
            batch_sizes = [2, 3]
401
402
403
404
            self._test_inference_batch_consistent(
                batch_sizes=batch_sizes,
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
            )
405
        else:
406
407
408
            self._test_inference_batch_consistent(
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
            )
409

410
    @skip_mps
411
412
413
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

414
    @skip_mps
415
    def test_save_load_local(self):
416
        return super().test_save_load_local(expected_max_difference=5e-3)
417

418
    @skip_mps
419
420
421
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

Will Berman's avatar
Will Berman committed
422

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
@nightly
class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_karlo_cpu_fp32(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/unclip/karlo_v1_alpha_horse_cpu.npy"
        )

        pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha")
        pipeline.set_progress_bar_config(disable=None)

        generator = torch.manual_seed(0)
        output = pipeline(
            "horse",
            num_images_per_prompt=1,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)
        assert np.abs(expected_image - image).max() < 1e-1


Will Berman's avatar
Will Berman committed
454
455
456
457
458
459
460
461
462
463
464
465
@slow
@require_torch_gpu
class UnCLIPPipelineIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_unclip_karlo(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
466
            "/unclip/karlo_v1_alpha_horse_fp16.npy"
Will Berman's avatar
Will Berman committed
467
468
        )

469
        pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
470
471
472
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

473
        generator = torch.Generator(device="cpu").manual_seed(0)
Will Berman's avatar
Will Berman committed
474
475
476
477
478
479
        output = pipeline(
            "horse",
            generator=generator,
            output_type="np",
        )

480
        image = output.images[0]
Will Berman's avatar
Will Berman committed
481
482

        assert image.shape == (256, 256, 3)
483

484
485
        assert_mean_pixel_difference(image, expected_image)

Will Berman's avatar
Will Berman committed
486
    def test_unclip_pipeline_with_sequential_cpu_offloading(self):
487
488
489
490
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

491
        pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        _ = pipe(
            "horse",
            num_images_per_prompt=1,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            output_type="np",
        )

        mem_bytes = torch.cuda.max_memory_allocated()
507
508
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 7 * 10**9